Novel hemp biomass-derived activated carbon as cathode material for aqueous zinc-ion hybrid supercapacitors: Synthesis, characterization, and electrochemical performance


Tekin B., Topcu Y.

Journal of Energy Storage, cilt.77, 2024 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 77
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1016/j.est.2023.109879
  • Dergi Adı: Journal of Energy Storage
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Compendex, INSPEC
  • Anahtar Kelimeler: Activated carbon, Green synthesis, Hemp biomass, Hybrid Zn-ion supercapacitor
  • Ondokuz Mayıs Üniversitesi Adresli: Evet

Özet

This research paper investigates the use of aqueous electrolytes in multivalent zinc-ion hybrid supercapacitors, highlighting their advantages over traditional supercapacitors in terms of increased energy density, cost-effectiveness, and enhanced safety. The study focuses on synthesizing activated carbon materials from hemp biomass through hydrothermal synthesis and KOH chemical activation. The resulting activated carbon possesses a highly porous structure essential for efficient energy storage. Herein, various advanced techniques were employed to examine the structural properties of the activated carbon material, such as X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET) analysis, Fourier-Transform Infrared (FTIR) spectroscopy, Energy-Dispersive X-ray spectroscopy (EDS), and X-ray Photoelectron Spectroscopy (XPS). On the other flip side, the hemp-derived carbon cathode exhibits a high electrochemical capacity of 220 F/g and an energy density of 65 Wh/kg, highlighting its potential for efficient energy storage. Moreover, the cathode material demonstrates remarkable cycling stability, retaining over 98 % of its capacity after 2000 charge/discharge cycles, indicating a promising long cycle life. Overall, this study emphasizes the potential of aqueous electrolytes and hemp biomass-derived carbon materials in advancing the development of high-performance multivalent zinc-ion hybrid supercapacitors.