Paracrine Factors Released from Tonsil-Derived Mesenchymal Stem Cells Inhibit Proliferation of Hematological Cancer Cells Under Hyperthermia in Co-culture Model


Yüce M., Albayrak E.

APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2023 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1007/s12010-023-04757-7
  • Dergi Adı: APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, PASCAL, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Chemical Abstracts Core, Compendex, EMBASE, Food Science & Technology Abstracts, MEDLINE, Pollution Abstracts, Veterinary Science Database
  • Ondokuz Mayıs Üniversitesi Adresli: Evet

Özet

Mesenchymal stem cells (MSCs) are promising biological therapeutic candidates in cancer treatment. As a source of MSCs, palatine tonsil tissue is one of the secondary lymphoid organs that form an essential part of the immune system, and the relation between the secondary lymphoid organs and cancer progression leads us to investigate the effect of tonsil-derived MSCs (T-MSC) on cancer treatment. We aimed to determine the anti-tumoral effects of T-MSCs cultured at the febrile temperature (40 degrees C) on hematological cancer cell lines. The co-culture of cancer cells with T-MSCs was carried out under fever and normal culture conditions, and then the cell viability was determined by cell counting. In addition, apoptosis rate and cell cycle arrest were determined by flow cytometry. We confirmed the apoptotic effect of T-MSC co-culture at the transcriptional level by using real-time polymerase chain reaction (RT-PCR). We found that co-culture of cancer cells with T-MSCs significantly decreased the viable cell number under the febrile and normal culture conditions. Besides, the T-MSC co-culture induced apoptosis on K562 and MOLT-4 cells and induced the cell cycle arrest at the G2/M phase on MOLT-4 cells. The apoptotic effect of T-MSC co-culture under febrile stimulation was confirmed at the transcriptional level. Our study has highlighted the anti-tumoral effect of the cellular interaction between the T-MSCs and human hematological cancer cells during in vitro co-culture under hyperthermia.