Estimation of spatial distrubition of groundwater level and risky areas of seawater intrusion on the coastal region in CarAYamba Plain, Turkey, using different interpolation methods


Arslan H.

ENVIRONMENTAL MONITORING AND ASSESSMENT, cilt.186, sa.8, ss.5123-5134, 2014 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 186 Sayı: 8
  • Basım Tarihi: 2014
  • Doi Numarası: 10.1007/s10661-014-3764-z
  • Dergi Adı: ENVIRONMENTAL MONITORING AND ASSESSMENT
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.5123-5134
  • Anahtar Kelimeler: Interpolation methods, Groundwater level, Sea water intrusion, Spatial distribution, SOIL PROPERTIES, VARIABILITY
  • Ondokuz Mayıs Üniversitesi Adresli: Evet

Özet

Groundwater level plays a significant role in coastal plains. Heavy pumping and excessive use of near-coast groundwater can increase the intrusion of seawater into the aquifers. In the present study, groundwater levels were measured at 59 groundwater wells at different times during pre- and post-irrigation seasons (April and September of the year 2012) in CarAYamba Plain, Turkey. To select the best method, two deterministic interpolation methods (inverse distance weighing (IDW) with the weights of 1, 2, and 3 and radial basis function (RBF) with spline with tension (SPT) and completely regularized spline (CRS)) and two stochastic methods (ordinary kriging (OK) with spherical, exponential, and Gaussian variograms) and cokriging (COK)) were compared and then the best interpolation method was used to evaluate the spatial distribution of groundwater levels in different seasons and seasonal changes. A total of nine different techniques were tested. Also, risky areas of seawater intrusion in coastal area were determined using the best methods for two periods. The performance of these interpolation methods is evaluated by using a validation test method. Statistical indices of correlation (R (2)), mean absolute error (MAE), and root-mean-square error (RMSE) were used to select and validate the best methods. Comparisons between predicted and observed values indicated RBF as the optimal method for groundwater level estimation in April and September. When the best method RBF and the worst method IDW were compared, significant differences were observed in the spatial distribution of groundwater. Results of the study also revealed that excessive groundwater withdrawals during the post-irrigation season dropped the groundwater levels up to 2.0 m in some sections. With regard to seawater intrusion, 9,103 ha of land area was determined to be highly risky and risky.