SAHA attenuates rotenone-induced toxicity in primary microglia and HT-22 cells


Gunaydin C., celik Z. B., Bilge S. S., Avcı B., Kara N.

TOXICOLOGY AND INDUSTRIAL HEALTH, cilt.37, sa.1, ss.23-33, 2021 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 37 Sayı: 1
  • Basım Tarihi: 2021
  • Doi Numarası: 10.1177/0748233720979278
  • Dergi Adı: TOXICOLOGY AND INDUSTRIAL HEALTH
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, BIOSIS, Communication Abstracts, EMBASE, Environment Index, Food Science & Technology Abstracts, Index Islamicus, MEDLINE, Metadex, Pollution Abstracts, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.23-33
  • Anahtar Kelimeler: Rotenone, SAHA, histone acetylation, inflammation, oxidative stress, toxicology
  • Ondokuz Mayıs Üniversitesi Adresli: Evet

Özet

Rotenone is an industrial and environmental toxicant that has been strongly associated with neurodegeneration. It is clear that rotenone induces inflammatory and oxidative stress; however, information on the role of histone acetylation in neurotoxicity is limited. Epigenetic alterations, neuroinflammation, and oxidative stress play a role in the progression of neurodegeneration and can be caused by exposure to environmental chemicals, such as rotenone. Histone modifications, such as methylation and acetylation, play an important role in mediating epigenetic changes. Therefore, we here investigated the effects of histone acetylation on rotenone-induced inflammation and oxidative stress in both primary mouse microglia and hippocampal HT-22 cells using the pan-histone deacetylase (HDAC) inhibitor, suberoylanilide hydroxamic acid (SAHA). Our results showed that SAHA suppressed the inflammatory response by decreasing nuclear factor kappa B and inducible nitric oxide synthase expression. Additionally, SAHA inhibited the rotenone-induced elevation of interleukin 6 and tumor necrosis factor alpha levels in both cell lines. Furthermore, SAHA improved the rotenone-induced antioxidant status by mitigating the decrease in cellular glutathione levels. Additionally, SAHA prevented the rotenone-induced increase in the HDAC activity in microglial and hippocampal HT-22 cells. Together, our results showed that SAHA reduced rotenone-induced inflammatory and oxidative stress, suggesting a role for histone deacetylation in environmental-related neurotoxicity.