THE VARIATION OF ANTIOXIDANT DEFENSE SYSTEM OF Streptomyces sp M4018 WITH RESPECT TO CARBON SOURCES


AYAR KAYALI H., Sazak A., ŞAHİN N., Tarhan L.

PREPARATIVE BIOCHEMISTRY & BIOTECHNOLOGY, cilt.42, sa.4, ss.322-334, 2012 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 42 Sayı: 4
  • Basım Tarihi: 2012
  • Doi Numarası: 10.1080/10826068.2011.606390
  • Dergi Adı: PREPARATIVE BIOCHEMISTRY & BIOTECHNOLOGY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.322-334
  • Anahtar Kelimeler: antioxidant system, carbon sources, pyruvate production, Streptomyces hiroshimensis M4018, LIPID-PEROXIDATION, PYRUVATE, METABOLISM, CATALASE, GLUCOSE
  • Ondokuz Mayıs Üniversitesi Adresli: Evet

Özet

The effect of glycerol, glucose, and starch as carbon sources on the antioxidant defense system such as superoxide dismutase (SOD) and catalase (CAT) activities, pyruvate levels, and membrane lipid peroxidation (LPO) levels of Streptomyces sp. M4018, after isolation from the rhizosphere samples of Colutea arborescens and identification as a strain of S. hiroshimensis based on phenotypic and genotypic characteristics, were investigated. As an antioxidant defense enzyme, SOD activities increased up to 20 g/L of glycerol and 15 g/L of starch, while they showed negative correlation with glucose concentration. CAT activity variations of glycerol-and glucose-supplemented mediums showed significant positive correlations with the trend of SOD activities. However, CAT activity, in contrast to SOD, in Streptomyces sp. M4018 tended to decrease as the starch concentration increased. The production of pyruvate increased with respect to glycerol and starch up to 15 g/L, while it was positively correlated with glucose concentration. The highest pyruvate production was seen at 20 g/L glucose. Membrane LPO levels were negatively correlated with the activities of SOD and CAT enzymes, and the minimum LPO level was determined at 5 g/L of glucose, where SOD and CAT activities reached their maximum levels. Nevertheless, the higher SOD and CAT activities in a wider range of incubation period compared to the beginning by resulting in insignificant increases in membrane LPO levels showed the unusual antioxidant response capacities of the in Streptomyces sp. M4018 against the potentially deleterious effects of reactive oxygen species (ROS) for glycerol, glucose, and starch as carbon sources.