Inhibition of acrolein-induced apoptosis by the antioxidant selenium


Gokce A. B., Eren B., SAĞIR D., Yilmaz B. D.

TOXICOLOGY AND INDUSTRIAL HEALTH, cilt.36, sa.2, ss.84-92, 2020 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 36 Sayı: 2
  • Basım Tarihi: 2020
  • Doi Numarası: 10.1177/0748233720909043
  • Dergi Adı: TOXICOLOGY AND INDUSTRIAL HEALTH
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Agricultural & Environmental Science Database, BIOSIS, Communication Abstracts, EMBASE, Environment Index, Index Islamicus, MEDLINE, Metadex, Pollution Abstracts, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.84-92
  • Anahtar Kelimeler: Acrolein, selenium, liver, apoptosis, histopathology, rat, OXIDATIVE STRESS, PROTECTION, METABOLISM, PATHWAY, DEATH
  • Ondokuz Mayıs Üniversitesi Adresli: Evet

Özet

In this study, the effects of a potent antioxidant, selenium, on apoptosis induced by acrolein, a cytotoxic and genotoxic environmental pollutant, were investigated by immunohistochemical and electron microscopic methods. One hundred adult male Wistar albino rats were used in the study. The rats were divided into four main groups: control, acrolein, selenium, and acrolein + selenium. The animals in the experimental groups were given 1 mg/kg/day selenium and 4 mg/kg/day acrolein daily for 7 days by gavage. After drug administration, each group was divided into subgroups according to the time they were to be euthanized: 12th hour, 1st, 2nd, 3rd, and 5th day. The rats in each group at the determined time were euthanized and their livers were removed. Routine histological procedures were performed for light and electron microscopy examinations. After applying the Terminal Deoxynucleotidyl Transferase dUTP nick end labeling assay on the liver sections, apoptotic index values were calculated. Comparing the liver sections of the rats in the acrolein group and the control group, acrolein was found to cause a significant increase in the apoptotic index. The apoptotic index values of the acrolein + selenium group decreased compared to the acrolein group. In the electron microscopic examinations, apoptotic findings were observed in the liver tissues of the rats given acrolein, such as chromatin condensation in the nucleus of hepatocytes, dilatations in the perinuclear space, and cytoplasmic vacuolization. These apoptotic findings were not observed in the acrolein + selenium group after the 12th hour. These findings show that selenium may potentially be useful as a protective agent for people exposed to acrolein.