
T.R.
ONDOKUZ MAYIS UNIVERSITY

INSTITUTE OF GRADUATE STUDIES
DEPARTMENT OF COMPUTATIONAL SCIENCES

ANDROID MALWARE DETECTION USING AUDIO AND
IMAGE DATA TRANSFORMATION

Ph.D. Thesis

˘Oguz Emre KURAL

Supervisor
Prof. Dr. Erdal KILIÇ

SAMSUN
2023

DECLARATION OF COMPLIANCE WITH SCIENTIFIC ETHIC

I hereby declare and undertake that I complied with scientific ethics and academic
rules in all stages of my doctoral thesis, that I have referred to each quotation that I used
directly or indirectly in the study, and that the works I have used consist of those shown
in the references, that it was written in accordance with the institute writing guide and
that the stated cases in article 3, section 9 of the Regulation for TÜBİTAK Research
and Publication Ethics Board were not violated.

Is an Ethics Committee Necessary?
□ Yes
⊠ No

11/07/2023
Oğuz Emre KURAL

DECLARATION OF THE THESIS STUDY ORIGINALITY
REPORT

Thesis Title: ANDROID MALWARE DETECTION USING AUDIO AND
IMAGE DATA TRANSFORMATION

As a result of the originality report taken by me from the plagiarism detection
program on 19/06/2023 for the thesis titled above:

Similarity ratio : %15

Single source rate : %1 has been released.

19/06/2023
Prof. Dr. Erdal KILIÇ

,

ABSTRACT

ANDROID MALWARE DETECTION USING AUDIO AND IMAGE DATA
TRANSFORMATION

Oğuz Emre KURAL
Ondokuz Mayıs University

Institute of Graduate Studies
Department of Computational Science

Ph.D., July / 2023
Supervisor: Prof. Dr. Erdal KILIÇ

Mobile devices have started a new era with their hardware and various software
developed for them. A security vulnerability in these devices could lead to the theft of
personal information, breaches of privacy, and even financial loss. Therefore,
ensuring that the apps downloaded to the devices are reliable and safe is very
important. For this purpose, within the scope of this thesis, an investigation into the
image and audio-based approaches for Android malware detection and family
classification is conducted. In the image-based approach, an end-to-end method is
proposed that treats Android application files as binary sequences. In the method,
grayscale image representations were created for each sample, and training and testing
processes were carried out with CNN. Image representations of malware can be made
by treating the files as binary sequences or the extracted static features in matrix form.
For this reason, the impact of static feature set combinations on classification
performance is also investigated. Initially, all possible combinations of four different
feature sets obtained from Android application files are considered, and their effects
on classification performance are investigated. Effective feature set combinations are
determined by evaluating all combinations with ten different classification algorithms.
Subsequently, RGB images are created with feature set combinations, and training and
testing processes are carried out using CNN. In the results obtained, it was seen that
with different feature set combinations, a performance above 99% could be obtained.

In addition to image representations of Android applications, audio
representations can also be created. Although audio-based approaches are less
common than image-based ones in the literature, they can achieve similarly high
classification accuracies. In this context, an audio-based method is proposed, treating
the Android malware family detection problem as a music category classification
problem. Android application files were converted to audio files, and their
audio-based attributes were extracted. Then, features with high discrimination were
determined with four different feature selection algorithms, and the classification
processes were carried out. Family detection was performed with 96.6% accuracy in
experiments on an eight-class data set. At the end of the thesis, discussions were made
about the methods used in the study.

Keywords: Android Malware Detection, Family Classification, Audio-Based,
Image-Based, Machine Learning

iv

ACKNOWLEDGEMENT

I want to express my sincere thanks to my advisor, Prof. Dr. Erdal Kılıç, for

his knowledge and guidance throughout my graduate education process. My sincere

thanks also go to my teacher, Prof. Dr. Sedat Akleylek, who generously shared his

experiences. I want to thank my esteemed teacher Prof. Dr. Mustafa Ulutaş for sharing

his valuable views during my thesis journey.

I also want to thank my thesis committee members, Assoc. Prof. Dr. Rafet

Durgut and Assoc. Prof. Dr. Recep Sinan Arslan, for their contributions to my thesis

with their suggestions.

I would like to thank my dear friends Durmuş Özkan Şahin, Meryem Soysaldı

Şahin, and Kadir Kaya, with whom we often share our knowledge and experiences in

our academic life.

I want to thank my precious wife, Eda Kural, who has always made me feel her

support in every moment of my life and encouraged me to continue on my journey

whenever I feel hopeless. I would also like to thank my son, Kuzey Alp Kural, who

patiently waited for our time together and offered me his support with his little hands.

Lastly, I would like to thank my Mum, Dad, and Brother for always supporting and

caring for me.

Oğuz Emre KURAL

v

CONTENTS

ACCEPTANCE AND APPROVAL OF THE THESIS ... i
DECLARATION OF COMPLIANCE WITH SCIENTIFIC ETHIC ii
DECLARATION OF THE THESIS STUDY ORIGINALITY REPORT ii
ÖZET .. iii
ABSTRACT .. iv
ACKNOWLEDGEMENTS ... v
CONTENTS.. vi
SYMBOLS AND ABBREVIATIONS.. viii
FIGURES LEGENDS .. ix
TABLES LEGENDS .. x
1 INTRODUCTION .. 1

1.1 Motivation and Contribution .. 3
1.2 Organization... 5

2 BASIC STRUCTURES AND RELATED WORKS .. 6
2.1 Android Platform .. 6

2.1.1 Android Malware Analysis Tools ... 7
2.2 Android Malware Datasets .. 8
2.3 Performance Measures.. 9
2.4 Literature Review .. 10

3 PRELIMINARIES ... 28
3.1 Permission Weighting Approaches in Permission Based Android Malware Detection 29

3.1.1 Proposed Method ... 29
3.1.1.1 Term Weighting Methods ... 30
3.1.1.2 Experimental Results... 33

3.2 Apk2Img4AndMal: Android Malware Detection Framework Based on
Convolutional Neural Network ... 36

3.2.1 Proposed Framework .. 37
3.2.2 Experimental Settings ... 38

3.2.2.1 Used Data Set .. 38
3.2.2.2 Convolutional Neural Network .. 39
3.2.2.3 Experimental Results... 39

4 AN EXTENSIVE EXPERIMENTAL STUDY FOR ANDROID MALWARE
DETECTION: INVESTIGATION OF THE EFFECT OF STATIC FEATURE
GROUPS ON CLASSIFICATION PERFORMANCE 41
4.1 Motivation ... 41
4.2 Contribution ... 42
4.3 Experimental Design .. 43

4.3.1 Used Datasets .. 43
4.3.2 Feature Set Combinations .. 43
4.3.3 Image Transformation ... 45

4.4 Experimental Results.. 47
4.4.1 Malgenome Results .. 47
4.4.2 Drebin Results ... 50
4.4.3 CNN Results ... 52
4.4.4 Comparison with previous studies .. 57

vi

5 APK2AUDIO4ANDMAL: AUDIO BASED MALWARE FAMILY DETECTION
FRAMEWORK ... 60
5.1 Motivation ... 60
5.2 Contribution ... 61
5.3 Proposed Method .. 61

5.3.1 Feature Selection.. 64
5.3.1.1 Information Gain (IG).. 64
5.3.1.2 Gain Ratio (GR) ... 64
5.3.1.3 CFS Subset (CSF)... 65
5.3.1.4 ReliefF (RFF) .. 65

5.4 Experimental Settings... 66
5.5 Experimental Results.. 66

6 CONCLUSIONS .. 77
REFERENCES.. 80
CURRICULUM VITAE ... 89

vii

SYMBOLS AND ABBREVIATIONS

ABBREVIATIONS

𝐴𝐴𝑃𝑇2 : Android Asset Packaging Tool

𝐴𝑃𝐾 : Android Package Kit

𝐴𝑃𝐼 : Application Programming Interface

𝐴𝑅𝑆𝐶 : Android Resources

𝐴𝑋𝑀𝐿 : Android XML

𝐵𝐹𝐶𝐶 : Bark Frequency Cepstral Coefficients

𝐶𝑁𝑁 : Convolutional Neural Network

𝐷𝐸𝑆𝐶𝑅 : Descriptive Relevance

𝐷𝐼𝑆𝐶𝑅 : Discriminative Relevance

𝐷𝐸𝑋 : Dalvik Executable

𝐺𝐹𝐶𝐶 : Gammatone Frequency Cepstral Coefficients

𝐺𝐼𝑆𝑇 : Global Image Feature

𝐺𝑀𝐿 : Graph Modeling Language

𝐼𝐷𝐹𝐸𝐶 : Inverse Document Frequency Excluding Category

𝐽𝐴𝑅 : Java Archive

𝐽𝐹𝑆 : Joint Feature Score

𝐾𝑁𝑁 : K-Nearest Neighbours

𝐿𝐵𝑃 : Local Binary Pattern

𝑀𝐹𝐶𝐶 : Mel-Frequency Cepstral Coefficients

𝑂𝐷𝐸𝑋 : Optimized Dalvik Executable

𝑅𝐹 : Random Forest

𝑅𝐹𝐹 : Relevance Frequency

𝑅𝐺𝐵 : Red-Green-Blue

𝑆𝐷𝐾 : Software Development Kit

𝑆𝑉𝑀 : Support Vector Machine

𝑉𝐺𝐺 : Very Deep Convolutional Networks

𝑇𝐺𝐹 : Term Global Frequency

𝑋𝑀𝐿 : Extensible Markup Language

viii

FIGURES LEGENDS

Figure 3.1. The proposed Android malware detection framework............................... 38

Figure 4.1. Generated image samples .. 47

Figure 4.2. Graphical representation of classification results on Malgenome dataset 49

Figure 4.3. Graphical representation of classification results on Drebin dataset 52

Figure 4.4. Used CNN model .. 53

Figure 4.5. Accuracy results for feature set combinations on Drebin dataset 55

Figure 4.6. Loss results for feature set combinations on Drebin dataset 55

Figure 4.7. Val accuracy results for feature set combinations on Drebin dataset............. 55

Figure 4.8. Val loss results for feature set combinations on Drebin dataset 56

Figure 4.9. Accuracy results for feature set combinations on Malgenome dataset........... 56

Figure 4.10. Loss results for feature set combinations on Malgenome dataset 56

Figure 4.11. Val accuracy results for feature set combinations on Malgenome dataset 57

Figure 4.12. Val loss results for feature set combinations on Malgenome dataset............. 57

Figure 5.1. Audio features based android malware family detection workflow............... 61

Figure 5.2. Zero crossing rate feature distribution by families - box plot 68

Figure 5.3. Mfcc8 feature distribution by families - box plot 68

Figure 5.4. Mfcc12 feature distribution by families - box plot 69

Figure 5.5. Mfcc19 feature distribution by families - box plot 69

Figure 5.6. Contrast feature distribution by families - box plot 70

Figure 5.7. Flatness feature distribution by families - box plot 70

Figure 5.8. Mel spectrogram feature distribution by families - box plot 71

Figure 5.9. Poly feature distribution by families - box plot.. 71

Figure 5.10. Confusion matrix of family classification results using ReliefF feature
selection algorithm and KNN classifier ... 73

Figure 5.11. Confusion matrix of binary classification results using ReliefF feature
selection algorithm and RF classifier .. 76

ix

TABLES LEGENDS

Table 2.1. Confusion matrix... 9

Table 3.1. M0Droid dataset classification results by accuracy 35

Table 3.2. M0Droid dataset classification results by F-measure.................................. 35

Table 3.3. AMD dataset classification results by accuracy .. 36

Table 3.4. AMD dataset classification results by F-measure 36

Table 3.5. Results of the proposed framework .. 40

Table 4.1. Feature count distribution across datasets and categories 44

Table 4.2. Color channel assignments for feature set combinations 46

Table 4.3. Accuracy-based classification results on Malgenome dataset 48

Table 4.4. F-measure based classification results on Malgenome dataset 48

Table 4.5. Classification results using MLP classifier with ACS features on Malgenome
dataset... 50

Table 4.6. Accuracy-based classification results on Drebin dataset.............................. 51

Table 4.7. F-measure based classification results on Drebin dataset 51

Table 4.8. Classification results using RF classifier with ACS features on Drebin dataset . 52

Table 4.9. Classification results of Drebin dataset on CNN 54

Table 4.10. Classification results of Malgenome dataset on CNN 54

Table 4.11. List of studies for comparison... 58

Table 4.12. Comparisons with previous studies .. 59

Table 5.1. Used dataset ... 66

Table 5.2. Selected features by feature selection algorithms 67

Table 5.3. Classification results by feature selection algorithms and classifiers 71

Table 5.4. Performance metrics using ReliefF and KNN... 72

Table 5.5. Comparison of previous works ... 74

Table 5.6. Binary classification results by feature selection algorithms and classifiers 75

Table 5.7. Binary classification results using ReliefF feature selection algorithm and
RF classifier ... 75

x

1 INTRODUCTION

Mobile devices are in almost every aspect of our daily life. It touches people’s

lives in many areas, like education, health, transportation, and personal activities. More

and more people are becoming mobile device users every day. According to Statista’s

report (Statista — Forecast number of mobile users, 2023), it was reported that there

were 7.1 billion users worldwide in 2021. In the same report, it is predicted that this

number will reach 7.3 billion in 2023 and 7.5 billion in 2025. In such a broad market,

the Android operating system has the largest share based on mobile operating systems.

According to another Statista report (Statista — Global mobile os market share, 2023),

Android is the market leader, with 71.4% in the first quarter of 2023. This market share

makes the platform a honeypot for application developers and cyber attackers. While

developers develop different paid and free applications and present them to people,

cyber attackers target people with the same method. Although the Android platform

is an open-source platform, it causes more people to contribute, but it also causes

malicious people to take advantage of the vulnerabilities they detect.

Applications developed for Android can be published in different third-party

markets along with the official market offered by Google. Generally, unofficial markets

do not take precautions regarding published applications’ reliability. This provides

the appropriate environment to distribute their applications for developers who target

users with methods such as repackaging. Although the Google Play Store (Google

play store, 2023) takes measures with its review process, they are not always sufficient.

According to a report published by McCaffe in 2021 (McAfee Mobile Threat Report.,

2023), malware published on the market was downloaded by more than 700000 users

before it was noticed and removed by Google. The increasing number of apps makes

the detection of malicious applications more difficult. According to another report by

AVTest (AV-ATLAS - Malware & PUA, 2023), an average of 3 malicious applications

are seen every second. Moreover, with the increase in number, malware is using

more sophisticated methods every day (Elsersy, Feizollah, & Anuar, 2022). These

observations reveal the need to develop faster, more efficient, and more advanced

techniques for Android malware detection.

Android malware detection is performed in three different ways according to the

feature extraction approach (Meijin et al., 2022). These are static analysis, dynamic

analysis, and hybrid analysis. Static analysis is an analysis method performed by

analyzing Android files and extracting information such as API calls, permissions, and

opcode sequences. It is faster and generally safer because the analysis is done without

running suspicious files. Dynamic analysis is the analysis method in which the

application is run in a sandbox environment, and its behavior is monitored. Data such

as resource usage, network traffic, and API requests are obtained by monitoring the

behavior of the application during operation. Then, inferences are made from the

obtained data with different methods. Both methods have different advantages and

disadvantages. Static analysis approaches can provide full code coverage because they

examine application files. It’s also safer and faster overall, as analysis is performed

without running the application. However, it is generally more vulnerable to first-day

attacks and obfuscation techniques. In order to overcome this deficit, in recent years,

static analysis approaches have been made more resilient by applying data

transformation techniques and deep learning methods. Although static analysis

methods evaluate the application through its files, they cannot predict its behavior

during operation. On the other hand, dynamic analysis methods make determinations

by monitoring applications at runtime. It detects behavior patterns by observing the

behaviors of applications, such as resource consumption, system calls, API calls, and

network usage. Since they monitor applications at runtime, they are more resistant to

first-day attacks and obfuscated malware. However, a sandbox-like analysis

environment should be created to perform dynamic analysis, and applications should

be monitored for a certain period. This period varies according to the process of the

application performing malicious behaviors. In addition, specific steps need to be

taken to trigger the malicious behavior of many malware (Maniriho, Mahmood, &

Chowdhury, 2022). This makes dynamic analysis methods costly, slow, and difficult

to perform. Finally, hybrid analysis is a combination of static and dynamic analysis

methods to make malware detection more accurate and efficient.

Existing approaches are supported by adapting innovative methods applied in

different fields. For example, techniques used in document classification in text

mining can be adapted to malware detection (M. Sharma, Chawla, & Gajrani, 2016;

2

Suarez-Tangil, Tapiador, Peris-Lopez, & Blasco, 2014). Similarly, with the

representation of data in various domains, audio, and image-based approaches can

also be used in malware detection (Vasan, Alazab, Wassan, Safaei, & Zheng, 2020;

Farrokhmanesh & Hamzeh, 2019). Within the scope of this thesis, Android

applications are represented in other domains, and new methods are proposed for

Android malware detection.

1.1 Motivation and Contribution

Android malware poses various threats, including the theft of personal data,

altering or deleting device files, monitoring user activities, and causing financial

damage through banking applications. In addition to detecting malware, it is

important for researchers to understand which family they belong to take appropriate

precautions (B. Wu et al., 2021). However, this process is both time-consuming and

costly. For this reason, it is essential to produce effective and cost-effective methods to

solve these problems. Different static and structural information can be obtained when

Android applications are handled statically. Application files can be taken as binary,

and information such as permissions, API calls, and intent filters can be obtained by

processing the files. Using all of the received information often leads to inefficient use

of computational resources. For this reason, choosing the efficient ones from the

feature sets reduces the cost of classification and increases the classification

performance. When the application files are handled as binary, the data is usually

represented in different domains. Transforming data into other domains paves the way

for adapting techniques applied in different fields to malware detection and examining

data differently. It has been observed that especially audio and image conversion

techniques can achieve effective results in malware detection. Along with these

observations, this thesis study sought answers to the following research questions in

Android malware detection and family detection.

• Can malware be detected by converting binary sequences from APK files to grayscale

images?

• In static analysis, different attribute groups can be obtained from application files.

How do these attribute groups affect classification performance when used

individually or together?

3

• Classifiers play a crucial role in static malware detection models. Which classification

algorithms show higher performance in static analysis?

• How does the conversion of feature sets obtained by static analysis to RGB image

affect classification performance?

• Can Android malware family detection be performed by representing binary

sequences from APK files as audio signals?

• Which features are more effective in audio-based Android malware family detection?

In response to the first research question, a structure that reads the classes.dex file

as binary and performs end-to-end Android malware detection with the CNN model

proposed (Kural, Sahin, Akleylek, Kılıç, & Ömüral, 2021). Grayscale images were

obtained from binary sequences, and detections were made with the CNN network.

Experiments were carried out with a data set containing more than 24000 samples, and

the results were shared.

In response to the second and third research questions, experiments were

conducted on Android malware detection with four different feature sets (Kural,

Sahin, & Kiliç, 2023). Considering all possible combinations of feature sets, the

feature sets with the highest contribution were determined. The results were validated

by experiments performed on ten different classifiers and two different data sets. In

addition, classification algorithms that produce successful results in Android malware

detection have been determined. In the results, it was seen that API calls made more

successful results than other attribute sets. Responding to the fourth research

question, experiments were carried out with RGB image representations of feature set

combinations. Image representations are created by giving different sets of features

belonging to the same application to different color channels of RGB images.

Classification performances are shared by giving comparative results. In the results, it

has been seen that the classification performance is over 99% when the right feature

sets are selected.

Finally, in response to research questions five and six, the Android classes.dex

file is represented by an audio file in .wav format (Kural, Kiliç, & Aksaç, 2023).

Audio-based features are extracted from the data and converted to audio by making

audio-based feature extraction. Then, audio-based features with high discrimination

are determined by applying four different feature reduction methods. Within the scope

4

of the study, the attributes with high discrimination and those with low discrimination

were shared. To the best of our knowledge, this is the first study to examine feature

selection and its effects on classification performance in audio-based Android malware

family classification.

1.2 Organization

The rest of the thesis is organized as follows. In Chapter 2, we provided

information on Android file structure and tools used in malware analysis. At the same

time, the performance criteria used in the studies and the literature research on the

field studied were presented. In Chapter 3, we discuss our evaluations on Android

malware detection and provide a detailed account of our preliminary investigations.

In Chapter 4, we examined the effects of feature set combinations on Android

malware detection. Furthermore, we generated image representations from feature set

combinations and shared results on training and testing processes using a CNN model.

Lastly, in Chapter 5, we introduced an audio-based Android malware detection

model. We also employed four feature reduction methods on the audio-based features,

identifying those most beneficial in Android malware family classification.

5

2 BASIC STRUCTURES AND RELATED WORKS

This section provides an overview of the structure of Android applications and the

tools and datasets commonly employed in Android malware analysis. Following this,

we discuss the performance metrics utilized during the classification stages. Finally,

we provide a detailed review of relevant studies in the literature, focusing on their

methodologies and findings.

2.1 Android Platform

Android applications are distributed with package files called APKs. An APK

comprises several key components often utilized in static analysis, including

AndroidManifest.xml, Classes.dex, Resources.arsc files, and directories like

META-INF, Assets, res, and lib.

The AndroidManifest.xml file is the root file where all application components are

declared. This file encapsulates critical details such as the application’s package name,

the application’s name, the SDK version it’s built with, the hardware prerequisites, and

the permissions it needs to operate properly. Its primary role is to inform the system

about all application components, such as activities, services, receivers, and providers.

AndroidManifest.xml is frequently utilized in static analysis-based methods such as

permission analysis and data transformation-based methods. The Classes.dex file is

the file that contains the compiled Java bytecode of Android applications. This file is

frequently used in code analysis and data transformation-based methods. Information

such as component features, code dependencies, and string information can be accessed

by analyzing this file. The Resources.arsc file is the file that contains the compiled

resources of the application. It includes the precompiled versions of files such as

strings, colors, and styles. The META-INF directory contains certificate and signature

information related to packaging and security. It is responsible for verifying, signing,

and maintaining the integrity of APKs. Assets and res directories are directories

that contain application resources. The assets directory includes structures such as

image, audio, and text files, while the res directory includes structures such as layouts

and drawables. Finally, the lib directory contains compiled or shared libraries in

applications and usually includes subdirectories separated by device architectures.

2.1.1 Android Malware Analysis Tools

This section describes the tools available for static and dynamic Android malware

analysis.

AAPT2: AAPT2 is the official build tool for Android (AAPT2 — Android Studio

— Android Developers, 2023). AAPT2 takes resources such as images, user interface

layouts, and language strings and parses them, indexes them, and compiles them.

AAPT2 is a critical part of the Android application development process.

Androguard: Androguard is a static analysis tool that provides information

about APK, DEX, XML, and ARSC files (Androguard, 2023). It allows

Disassemble/Analysis/Modification operations with DEX, ODEX, APK, AXML, and

ARSC files. It was developed with Python.

Apktool: It is a 3rd party tool developed to reverse engineer Android applications

(Apktool, 2023). It can be used in decoding and repackaging processes of Android

application packages.

ClassyShark: ClassyShark is an analysis tool that enables binary analysis in

Android applications (ClassyShark: Android and Java Bytecode viewer, 2023). The

class interface and its members in binary executables allow displaying of important

information such as dex count and dependencies. It supports library formats such as

.dex, .aar, .so and executables such as .apk, .jar, and .class. It is an open-source tool

developed by Google.

Cuckoo: Cuckoo Sandbox is an open-source system for malware analysis

(Cuckoo Sandbox: Automated Malware Analysis, 2023). It allows monitoring and

inspection of different data, such as network traffic (including SSL/TLS encrypted),

resource usage, and API calls of the applications under investigation. Apart from the

Android platform, analyses can be made for different platform malware.

DeGuard: It is a tool that reverses different obfuscation operations performed

in Android applications (DeGuard: Statistical Deobfuscation for Android, 2023).

Removing the obfuscation effect allows practical analysis for applications.

7

dex2jar: It is a tool for converting classes.dex file to JAR file (dex2jar: Tools to

work with android .dex and java .class files, 2023). Converting the codes in bytecode

to JAR format makes the codes more human-readable.

JADX: It is a tool that extracts Java source codes from Android Dex and APK

files (JADX: Dex to Java decompiler, 2023). It facilitates code analysis for researchers

by providing opportunities such as editing and coloring on Java source codes. It can be

used both from the command line and from the GUI.

MobSF: Mobile Security Framework is an all-in-one malware analysis tool

offering static and dynamic analysis (MobSF: Mobile Security Framework, 2023). It

offers pen-testing and malware analysis on malware developed for Android, iOS, and

Windows.

2.2 Android Malware Datasets

This section provides an overview of datasets commonly utilized in Android

malware detection.

AMD: Shared by (Wei, Li, Roy, Ou, & Zhou, 2017), AMD contains 24553

Android malware samples collected between 2010 and 2016. The dataset consists of

71 families and 135 variants.

AndroZoo: Shared by (Allix, Bissyandé, Klein, & Le Traon, 2016), AndroZoo

contains 22,775,299 applications collected from different application markets. The

first version of the data set was shared with 3.1 million applications in 2016 and is still

being updated today.

CIC-AndMal2017: As shared by (Lashkari, Kadir, Taheri, & Ghorbani, 2018),

CIC-AndMal2017 includes 429 malicious and 5065 benign samples from different

sources. Although more than 4000 malicious and 6000 benign samples were examined

during the dataset’s creation, not all were included due to low sample quality. While the

benign samples were collected between 2015-2017, the malware samples started to be

collected in 2012. The dataset contains samples from 42 families in 4 main categories

(Adware, Ransomware, Scareware, SMS Malware).

CIC-MalDroid2020: The CIC-MalDroid2020 dataset shared by (Mahdavifar,

8

Alhadidi, & Ghorbani, 2022) includes 17341 Apps, consisting of 4 malware and one

benign category. The samples in the dataset were collected between December 2017

and December 2018. 11598 of the App samples were processed through a series of

processes and were shared as operable.

Drebin: As shared by (Arp et al., 2014), Drebin contains 5560 Android

application samples from 179 malware families. App samples were collected between

August 2010 and October 2012.

Malgenome: Malgenome contains 1260 Android malware samples from 49

malware families (Zhou & Jiang, 2012). App samples were collected between August

2010 and October 2011. The Malgenome dataset is the first publicly available Android

malware dataset shared by researchers.

2.3 Performance Measures

In classification tasks, the performance of a classifier is measured using the

confusion matrix. The confusion matrix is a table showing the ability of a classification

model to accurately predict classes. A confusion matrix is shown in Table 2.1.

Table 2.1. Confusion matrix

Predicted
Malware Benign

Actual Malware TP FN
Benign FP TN

Based on the classification results, a confusion matrix comprises four outcomes,

which include:

• True Positive(TP): Samples that the model predicts positively and are actually

positive.

• True Negative(TN): Samples that the model predicts negatively and are actually

negative.

• False Positive(FP): Samples that the model predicts as positive but are actually

negative.

• False Negative(FN): Samples that the model predicts as negative but are actually

9

positive.

These four components can be used to calculate model performance metrics

such as accuracy, precision, recall, and F-measure. The accuracy metric is the ratio

of correctly classified samples to the total number of samples. The mathematical

representation of accuracy is shown in Equation 2.1.

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (2.1)

Although accuracy can provide meaningful insights into model performance

when dealing with balanced datasets, it may be insufficient when used alone for

imbalanced datasets. In such scenarios, employing precision, recall, and F-measure

metrics can offer a more accurate evaluation. Precision and recall metrics are where

the positive class is at the forefront. Precision refers to how much of the positively

predicted data is genuinely positive. Recall, on the other hand, refers to how much of

the truly positive data is predicted as positive. The equations of precision and recall

are given in Equation 2.2 and Equation 2.3.

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (2.2)

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (2.3)

F-measure is calculated by taking the harmonic mean of precision and recall

values. The mathematical expression of F-measure is shown in Equation 2.4.

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 (2.4)

2.4 Literature Review

The most commonly used methods for Android malware detection are static

feature extraction followed by the use of machine learning approaches as a decision

maker. This process involves examining an application’s source code or application

binary without actually executing it, and identifying potential malicious patterns or

behaviors. In these models, researchers test innovations in efficient feature extraction

10

and machine learning approaches to increase performance. After the feature

extraction stage, methods such as data integration, data reduction, and feature

weighting are being researched to use the available features more effectively and to

use machine learning resources more efficiently. Researchers test the data obtained

from these methods with classification algorithms, comparing different classifiers and

newly proposed classification models, whether single or hybrid. The higher

performance of the developed models has led malware developers to find new ways,

such as obfuscation and encryption, to evade detection, especially by static

analysis-based methods. Researchers applied data-transformation techniques to adapt

static analysis methods, which are weaker against first-day attacks and obfuscation

techniques. New approaches are proposed based on data representation in different

domains, such as audio and image, using data transformation techniques. Researchers

prefer image transformation-based strategies not only because they can resist

obfuscated malware but also because they offer end-to-end malware detection

solutions using deep learning methods, such as CNN.

Inspired by these successful applications of image and audio transformations,

researchers realized that the Android malware and malware family detection model is

very similar to other classification problems, such as music classification and genre

recognition, due to the nature of the problem being dealt with. This similarity has led

researchers to innovative approaches based on audio and image transformations.

Given this evolution, this study incorporates approaches based on image and

audio transformations. We examine studies that employ classical image processing

techniques following image transformation, along with image-based deep learning

models that provide end-to-end solutions. Similarly, audio-based malware detection

techniques and their applications are also discussed in the context of the existing

literature.

In image transformation-based approaches, researchers have proposed methods

in which image representations are extracted with image processing techniques such as

GIST and LBP and evaluated with different classifiers.

(Nataraj, Karthikeyan, Jacob, & Manjunath, 2011) proposed a new method for

visualization and automatic malware classification in 2011. In the proposed method,

11

malware files are read in binary format and converted to gray-level images. The malware

detection problem was then considered a visual classification problem. GIST, which

uses the wavelet decomposition of the images, is used to obtain the texture features

of grayscale images. Experiments were carried out for classification using the kNN

algorithm with Euclidean distance. In the experiments performed with the data set

containing 9458 samples from 25 families, the most successful result was reported

as 98%. The proposed method is the first study in the literature to use image-based

approaches for malware detection.

(Kumar, Sagar, Kuppusamy, & Aghila, 2016) conducted a study in 2016 that deals

with apk files in different color formats. They extracted GIST features by converting

apk files to images in grayscale, RGB, CMYK, and HSL formats. Their experiments

with Decision Trees, KNN, and Random Forest algorithms on a small data set reported

the most successful result as 91%. The best results in the study were obtained with

grayscale images and the Random Forest algorithm.

(Luo & Lo, 2017) proposed a methodology for classifying malware images based

on their binary image and extracting local binary pattern (LBP) features. The LBP

is implemented on the malware images to extract useful features in pattern or texture

classification. To do this, malware read in binary format was first converted to grayscale

images. Then, every nine consecutive image pixels are rearranged to form a 3x3 grid

to extract the LBP features. The extracted LBP features were classified by machine

learning algorithms such as SVM and KNN, and the best result was reported as 93.17%.

Experiments were carried out with a dataset containing 12000 malware.

In a study conducted by (Darus, Ahmad, & Ariffin, 2019), Android malware

detection was investigated through two different approaches to the classes.dex file.

Firstly, the entire classes.dex file was converted into an 8-bit grayscale image. Secondly,

only the data field within classes.dex was extracted and converted into a grayscale

image. The purpose of this was to investigate whether classification performance

would be affected if only the data portion of the classes.dex file was processed. After

image transformation, image attributes are extracted with a GIST descriptor. A data

set containing 300 benign and 418 malware samples was used in the experiments.

The obtained feature vectors were classified with XGBoost, KNN, and RF classifiers,

12

and six results were obtained for two scenarios. The results reported that the highest

performance was obtained using the data section in classes.dex with 74%.

(Fang, Gao, Jing, & Zhang, 2020) proposed a new method for classifying Android

malware families based on DEX file section features. In their approach, attributes

are extracted in both domains by converting the dex file to image and plain text.

After the image transformation, both GIST features and texture attributes, as well as

color moments and attributes, were obtained from RGB images. With the plain text

transformation, text features were obtained with the Simhash algorithm. Then, it was

planned to determine the family by classifying the features obtained. Considering the

small number of samples in the classes for the classification stages, it was decided that

the SVM classifier was suitable for the problem. However, the fact that the features

obtained from the data set carry different types of data in other domains has revealed that

it would be more appropriate for each feature set to have its kernel and parameters. To

this end, the researchers proposed the Multiple Kernel Learning structure. Experiments

were conducted with different kernels and parameters to determine the most accurate

kernel combination. A 96% F-score performance was achieved in the experiments by

selecting 15 families containing more than 200 samples of the AMD dataset.

In another study they conducted in 2021 using the same dataset (J. Singh et al.,

2021), experiments were carried out for different classifier and feature fusion

strategies by extracting handcrafted features from grayscale images with techniques

such as GIST, LBP, and GLCM. In the first stage of the study, which was carried out

in two phases, results were obtained with KNN, SVM, and Random Forest algorithms,

and in the second stage, with CNN and feature fusion strategies. They reported by

comparing the results obtained with GLCM-SVM, GIST-SVM, LBP-SVM,

GLCM-KNN, GIST-KNN, LBP-KNN, LCM-RF, GIST-RF, LBP-RF pairs with the

experimental results obtained with feature fusion strategies. The results reported that

they achieved the highest performance, with 93.24%, with images converted from

Certificate and Android Manifest files and Feature Fusion SVM.

(Ünver & Bakour, 2020) proposed machine learning-based Android malware

detection using image-based local and global features. The Manifest, Dex, and ARSC

files were extracted from the Android application files and converted to grayscale

13

images. The method extracts local (SIFT, SURF, KAZE, ORB) and global features

(Colour Histogram, Hu Moments, Haralick Texture) from the images and classifies

them with different machine learning approaches. Experiments were carried out for

local and global features for scenarios where manifest, dex, and arsc files are used

separately and together. The experiments showed that the AdaBoost classifier reached

98% accuracy when the global features were extracted from the images produced from

the Manifest, Dex, and Manifest-Dex-ARSC files. When local features were extracted,

it was seen that the AdaBoost algorithm achieved 98% success with the set produced

from Manifest-DEX-ARSC files. When an overall review is made for local features, it

has been reported that the results obtained using the Manifest file are lower than those

obtained with DEX and Manifest-DEX-ARSC. In all experiments, it was reported that

the worst result was obtained with the ORB local feature. Among the local features, it

was seen that KAZE gave the best result. In addition, it was stated in the examinations

made for the computational times that the system can calculate under 0.018s.

(Bakour & Ünver, 2021) proposed a new model that hybridizes image-based

features with deep learning techniques. The model, called DeepVisDroid, extracts

image-based local features such as SIFT, SURF, ORB, and KAZE and image-based

global features such as Hu moments and Haralick texture to train a convolutional neural

network model in multiple scenarios. Four data sets were created during the image

conversion stages by considering the manifest.xml, resources.arsc, and classes.dex files

in the apk files. The experiments were carried out separately for each, and the results

were reported. Tests were carried out with state-of-the-art methods like VGG16 and

ResNet using a two-class data set containing 9700 samples. In the results, it was

revealed that the model can achieve high results with 98% accuracy.

(Shahid Alam, 2023) proposed a method that performs feature extraction on

gray-level images with Gabor filters. Gabor filters were applied with the sliding window

method to look for malicious behavior patterns in images representing applications. To

reduce the extracted features and contribute to the performance, feature selection was

made with a greedy method, Recursive Feature Elimination (RFE). Since the classifier

used in RFE is an essential criterion in the results obtained with RFE, preliminary

experiments were carried out with different classifiers on a 50-sample data set. As a

result of the experiments, it was concluded that the most efficient classifier for RFE is

14

linear SVM. In the classification experiments performed with Naive Bayes, AdaBoost,

and linear SVM after the selections, it was stated that the feature selection provides

+5% success for all classifications. It was noted that Naive Bayes showed the best result

with 99.43% accuracy in classifications. A balanced data set containing a total of 1402

samples was used in the experiments.

(Bakır & Bakır, 2023) introduced a novel model that employs autoencoders for

feature extraction. By generating image representations for each application, the

researchers performed feature extraction on images utilizing ANN-based, CNN-based,

and VGG19-based autoencoders. The experiments involved classifying a dataset of

3000 benign and 3000 malware applications using different machine-learning

algorithms. The best result obtained in the experiments was 98.56% accuracy with the

VGG19-based encoder and LR.

The image representations of the applications can be produced directly from

the binary sequences of the files, as well as at the end of the static feature extraction

process from the application files. Attributes such as permissions, API calls, and

opcode sequences that can be extracted from applications can be vectorized for each

application and converted to image representations in different formats.

(Ganesh et al., 2017) proposed a method that analyzes permission patterns with

CNN networks by converting application permissions to binary images. Considering

the application permissions for each apk according to the presence-absence status, 138

permissions were extracted. Then, the permission vectors were converted into matrix

form, and 12x12 binary images were obtained. In the training stages, well-known

networks such as LeNet, GoogleNet, ImageNet, and AlexNet were trained using the

Android Malware Genome and Drebin datasets. The experiments reported that the

best result was obtained with LeNet using a dataset containing 2000 malware and 500

benign samples. The reason why LeNet outperformed more complex networks, such as

GoogleNet, with a 93% success rate, was interpreted as the fact that 12x12 images were

not complicated enough for these networks. Within the scope of the study, an Android

mobile application called Droidscreen was developed. Although the application works

on mobile devices, the apps considered for evaluation are sent to a remote server, and

the evaluation result is sent back to the device.

15

In 2018, (Y.-X. Ding, Zhao, Wang, & Wang, 2018) studied detecting Android

malware using API calls. They parsed the .dex file to obtain the API calls and converted

the call sequences into a two-dimensional image. In experiments, the DREBIN dataset

was used to evaluate the effectiveness of the approach. The experiments conducted with

CNN, SVM, KNN, and RF showed that the most successful result, with 90% accuracy,

was achieved when CNN was utilized.

(Vu & Jung, 2021) proposed a framework called AdMat for Android malware

detection and classification using deep learning. AdMat characterizes Android

applications as adjacency matrices, which are then used as input images for a

Convolutional Neural Network (CNN) model. First, API methods used in applications

were extracted to create neighborhood matrices. Considering that the total number of

API methods would be very high, only 219 widespread API calls were considered.

Then, the calls were represented as graphs with GML for API calls. Neighborhood

matrices were created with the obtained GML and converted to NxN matrices. In

experiments with Drebin and AMD datasets, the best results for malware detection

and Family classification were reported as 97% and 92% F1-scores, respectively.

(Arslan & Tasyurek, 2022) proposed an image-based method for Android

malware detection to minimize resource consumption. The method has obtained a

QR-like image for each example by considering the features processed from the

AndroidManifest.xml file. Considering 349 different features, the areas where the

feature is present are coded as black, and the areas where it is absent are coded as

white. A CNN model with three convolution layers, constructed with the obtained

images, was trained, and the results were compared with classical machine learning

methods. The results show that the proposed method outperforms classical machine

learning methods such as SVM and RF with a test accuracy of 96.2%.

(Tasyurek & Arslan, 2023) proposed a fast and efficient approach called

RT-Droid. Combining the QR code-like visual transformation model they had

previously proposed with YOLO V5, they proposed a low resource consumption

approach that could detect 0.019 seconds. They conducted experiments with different

networks using the Drebin and Genome datasets for malicious samples and the Arslan

dataset for benign samples. The results indicated that their proposed model

16

outperformed similar networks, operating at speed 5.5 times faster. The peak

performance of the model was documented as a 97% F-score. Comparative analyses

revealed that their proposed model required 25 times less memory than grayscale

image conversion.

Image representations can be created using static attributes, as well as converting

application files directly to images. To this end, researchers proposed approaches

that read the application files as binary and convert them to image representations in

different formats.

(Hsien-De Huang & Kao, 2018) proposed a Color-inspired CNN-based Android

malware detection system named R2-D2. The system uses .dex files by converting

them to RGB images. When the similarity was measured with the Levenshtein distance

metric within the same family after the transformation, it was seen that the similarity

within the family was high. This shows that the proper methods can classify samples.

CNN-based methods were chosen to be used in the training and testing stages. However,

since the converted images are not natural images, it is predicted that filters such as

classical 3x3 and 5x5 may perceive unrelated data as related. To prevent this situation,

1x1 convolutions were used in the Inception-V3 network. Experiments were carried

out with 2 million samples collected between January and August 2017, and it was

reported that the system achieved 93% accuracy with 829356 samples.

(Yen & Sun, 2019) proposed a method that visualizes apk files by performing

multiple data transformations. The method is based on the processing of Java code.

For this reason, firstly, using dex2jar and jad tools, java code was obtained from the

dex file. The importance of code words is calculated to avoid the effect of obfuscation

techniques such as renaming. Word importance groups were created after calculating

the importance of each code word with TF-IDF from the Java code. Simhash and djib2

algorithms place the data on the x and y axes in the R, G, and B channels. After the

visual transformation, training, and testing processes were carried out with CNN. The

experiments were conducted with the data set containing 1440 APK files. Researchers

reported the best result as 92.67% accuracy.

(Y. Ding, Zhang, Hu, & Xu, 2020) proposed a method that reads dex files as

bytecode and classifies them with CNN. The proposed method is compared with similar

17

studies made with classical machine learning algorithms (Peiravian & Zhu, 2013), and

its advantages and disadvantages are revealed. In the process, firstly, image conversion

from binary code was made. Since the sizes of the files in the dataset are different, the

image sizes after the conversion were also other. To balance this situation and make

it ready for training and testing with CNN, the images have been resized to 512x512.

Then, using the Drebin dataset, CNN was trained with 3962 malware and 1000 benign

samples. In the experiments, it was stated that the proposed method achieved 94.4%

accuracy. Compared to the classical techniques, it was noted that the method obtained

better results than the decision tree but showed 1.7% lower classification performance

than SVM. However, compared to classical machine learning algorithms, the method’s

advantages are that it does not require prior domain knowledge and does not require

feature engineering. In addition, it was reported that the system performed highly in

experiments with polymorphic encryption applied malware, which is generally difficult

to classify by static methods.

(Zou, Luo, Liu, Wang, & Wang, 2020) proposed an Android Malware detection

method that processes bytecode sequences obtained from the data section of the dex

file. In the proposed method, the header and index sections in the Dex file were ignored,

and bytecode was obtained only from the data section. Large bytecode sequence sizes

cause high computational costs in training processes. Therefore, it was desired to set a

sequence limit that keeps TPR at reasonable levels while avoiding high computational

costs. For this purpose, starting from the 500KB limit, the TPR value of the dataset

was monitored for different values, and the 1500KB data size was determined as the

limit for bytecode sequences. Thus, only samples below 1500KB were included in the

training stages. While the sequences were trained with CNN, four datasets were used,

the largest of which was 10479 samples. The best result obtained from the experiments

was reported as 96.9% accuracy. The best result obtained in the experiments with

the 10479 sample dataset, which includes samples with seven different obfuscation

techniques, was reported as 92.17%. After the experiments, the misclassified samples

were evaluated manually, and the inferences on the data set and the method were shared.

Testing with Virustotal for 69 faulty samples classified as malicious in the reviews was

benign. When the misclassified malicious samples were examined manually, it was

seen that the average sequence size of the samples was below 500KB.

18

(Feng, Shen, Chen, Wang, & Li, 2020) proposed a two-layer system capable of

performing Android malware detection, category detection, and family detection. A

proposed model uses permissions, intent, and component information in the first layer

as features. Using a fully connected neural network, 95.22% accuracy was achieved

in this layer. Applications classified as benign in the first layer were evaluated in the

second layer for a secondary control. Network traffic features are used as features in

the second layer. A new method called CACNN, which uses CNN and AutoEncoder

as a cascade, is proposed in the evaluation. In the experiments performed for malware

detection (two classes), category detection (4 classes), and family detection (40 classes)

in the second layer, 99.3%, 98.2%, and 71.48% accuracy were obtained, respectively.

When the proposed method is evaluated, although it takes a secondary measure against

the false-negative samples in the first layer with its two-layer structure, it does not offer

anything for the false-positive samples in the first layer.

(W. Zhang, Luktarhan, Ding, & Lu, 2021) proposed a new Android malware

detection model based on a temporal convolution network (TCN) that combines the

visual features of the XML file with the data section of the DEX file. The proposed

method creates four gray-scale image datasets with different combinations of texture

features by fusing XML files and DEX files. The image size is then unified and input to

the designed neural network with three different convolution methods for experimental

validation. The experimental results show that adding XML files benefits Android

malware detection. The detection accuracy of the TCN model is 95.44%, precision

is 95.45%, recall rate is 95.45%, and F1-Score is 95.44%. Compared with other

methods based on the traditional CNN or lightweight MobileNetV2 model, the method

proposed in this paper, based on the TCN model, can effectively utilize bytecode image

sequence features, improve the accuracy of detecting Android malware and reduce its

computation.

(Gerardi, Iadarola, Martinelli, Santone, & Mercaldo, 2021) evaluates the

effectiveness of image-based malware detection techniques in the real world by testing

the resilience of these approaches when morphed samples are considered. The authors

present a tool called DexWave, which automatically injects perturbations techniques

targeting the smali code representation of Android applications to induce the classifier

to incorrectly predict the family to which the input malware belongs. With two

19

perturbation techniques called NopsBombing and StringBombing, various

instructions and strings were added to the original code, attempting to mislead a CNN

network with 90% detection accuracy. In the results, 20 of 59 samples could be

detected as malicious in the first experiments, while only nine were evaluated as

malicious after perturbation procedures.

(Daoudi et al., 2021) proposed DEXRAY, which visualizes binary sequences as

one-dimensional images. Considering that a square or rectangular visual transformation

would cause a loss of information carried by the binary sequence, they represented

binary expressions in a vector form. The proposed method conducted training and

tests with a 2-layer 1-D CNN model by representing dex files with (1, 128x128)

vectors. In the experiments, results were obtained for different scenarios, and the

results for all scenarios were shared in detail. First, results were obtained with Drebin

(15558 samples) and AndroZoo (158K samples), and comparisons were made with

state-of-the-art studies. In the results, it was reported that DEXRAY could detect

with 0.96 F1-score on the Drebin dataset. It was stated that the model achieved an

F1-score of 0.98 in tests performed on experiments that it had not seen before. In the

next step, it was said that DEXRAY could achieve successful results when experiments

were carried out with obfuscated samples at different rates. It was also reported that

downsizing caused up to 5% performance loss in experiments performed at different

sizes to compare the initial (1,128x128) size.

(Yadav, Menon, Ravi, Vishvanathan, & Pham, 2022) proposed a two-stage deep

learning framework for detecting Android malware and classifying its variants using

image-based malware representations of the Android DEX files. The framework uses

the EfficientNetB0 convolutional neural network to extract relevant features from the

malware color images. The extracted features are then passed through a global average

pooling layer and fed into a stacking classifier. The stacking classifier employs linear

support vector machine and random forest algorithms as base-level classifiers and

logistic regression as the meta-level classifier. The proposed method achieved an

accuracy of 100% in binary classification and 92.9% accuracy in 5-class classification

and 88.6% in 4-class classification. The framework is platform-independent and can

handle both unpacked and packed malware.

20

(Almomani, Alkhayer, & El-Shafai, 2022) proposed an automated vision-based

AMD model composed of 16 fine-tuned CNN algorithms for efficient and quick

detection of Android malware attacks. Working with both RGB and grayscale images,

fine-tuned Xception, VGG16, VGG19, DarkNet53, MobileNetV2, ResNet101,

AlexNet, ResNet50, ResNet18, InceptionV3, DarkNet19, ShuffleNet, Places365,

GoogleNet, NasNetMobile, GoogleNet, and SqueezeNet networks are trained.

Experiments were conducted with the Leopard Mobile dataset, and experiments were

carried out with 14733 malicious and 2486 benign applications. A sub-balanced data

set of 2486 or 2486 was created to examine the proposed model’s performance on

balanced and unbalanced data sets. Considering all parameters, the best results for the

balanced data set were reported as 99.40% F1-score in RGB images and 99.20%

F1-score in grayscale images. In the unbalanced dataset, the best performance was

reported as 93.1% in RGB images and 92.7% in grayscale images as F1-score.

(X. Li, Tang, Christo, Zhao, & Li, 2022) proposed an Android malware detection

method based on RGB image conversion using binary combinations of different files.

Dex, manifest, and META-INF files containing signature information were used and

converted to RGB images to represent each application. In the conversion, the bytecode

sequences of the files are combined and divided into three equal parts. Then, 224x224x3

color images were obtained by placing each piece in the image’s R, G, and B channels.

During the training and testing phases, experiments were carried out with AndMal2017,

CICMalDroid, and Drebin datasets using the VGG16 network. It has been reported

that the best result is 96% accuracy obtained in the experiments performed with the

AndMal dataset. Compared to similar studies with AndMal2017, it was stated that the

method achieved +4% better results.

(Ye, Zhang, Li, Tang, & Lv, 2022) proposed an Android malware detection

model that speeds up the training and testing phases using lightweight CNN. A fast

and efficient model based on MobileNetV2 is proposed by comparing the number of

parameters and training and test results of networks such as VGG16, InceptionV3, and

ResNet. Using the CIC-AndMal-2020 dataset, classes.dex, AndroidManifest.xml, and

resources.arsc files in the APK were converted to RGB images, creating a separate

channel. In experiments with other CNN models, it was stated that the best and fastest

results were obtained with MobileNetV2. It was noted that the lowest accuracy values

21

were obtained with VGG16. As a result of the experiments, it was stated that the model

created is more effective because the VGG16 and other large models have much more

parameters and require much more machine resources.

(Liu, Wang, Zhang, & Song, 2023) proposed the ImageDroid framework, which

can perform malware detection, family detection, and obfuscated software detection

with an image-based approach. By ignoring the header and index sections of the

classes.dex file analyses were performed only in the data area. In image conversion,

three-channel RGB images are preferred instead of one-dimensional grayscale images,

allowing more data to be carried in the same size images. Heat maps were created

on the images using the Grad-CAM algorithm to detect the visual parts that play a

vital role in detecting malware. The Grad-CAM algorithm believes that the last feature

maps of the convolution layer contain the most valuable data about the input data.

This approach determines the parts that play a key role in detecting maliciousness by

obtaining scores on feature maps. Experimental results were obtained for different

scenarios using three malware datasets with VGG, GoogleNet, and ResNet methods.

As a result of the research, 97.2% success was achieved in malware detection, 95.1%

in family detection, and 94.6% in obfuscated malware detection.

(Kinkead, Millar, McLaughlin, & O’Kane, 2021) proposed a novel method for

explaining the predictions of a CNN model used for Android malware detection. The

technique identifies locations in an Android app’s opcode sequence deemed important

by CNN and contributes to malware detection. Then, the sections highlighted by the

method were compared with the state-of-the-art explainability method LIME. It shows

that the areas considered most malicious by CNN match closely to those considered

most malicious by LIME. This indicates that CNN can successfully focus on potentially

malicious parts of applications. The researchers say that the proposed method can help

security analysts detect areas of applications that exhibit malicious behavior.

In another study that processes certain parts of the dex file, (H. Zhu, Wei, Wang,

Xu, & Sheng, 2023) proposed a framework called MADRF-CNN. In the research,

different parts of the dex file were handled, and it was evaluated that the header section

did not contain enough data for detection and the data area was larger and more complex

than necessary. Considering these criteria, the operations performed on the dex file

22

discuss six parts consisting of String ids, Type ids, Proto ids, Field ids, Method ids,

and Class ids sections. These extracted sections and the AndroidManifest.xml file were

converted to RGB images for classification stages and used. Considering that some

deep learning methods do not evaluate global context information, receptive fields, and

reuse of pixel attributes, they proposed a CNN variant called MADRF-CNN, which

uses a combination of max-pooling and average-pooling. By performing experiments

with 2507 malicious and 1417 benign applications from the VirusShare dataset, the

results were reported for both different input and network combinations. The results

show that the best results were obtained with the dex file and MADRF-CNN with

95.9% F-measure. The best result that can be obtained with the manifest file is 76.3%

F-measure.

(J. Singh, Thakur, Ali, Gera, & Kwak, 2020) proposed a system called

SARVOTAM (Summing of neurAl aRchitecture and VisualizatiOn Technology for

Android Malware identification) for identifying and classifying Android malware

using deep learning and optimization algorithms. The system automatically converts

non-intuitive malware features into fingerprint images and uses a fine-tuned

Convolutional Neural Network (CNN) to extract rich features from visualized

malware. Different image datasets were created using all combinations of APKs’

Certificate, AndroidManifest.xml, classes.dex, and resources.arsc files (15 in total). In

the training and testing stages, the softmax layer of CNN was replaced with

machine-learning techniques such as KNN, SVM, and RF. The results showed that the

combination of CNN and SVM was better for identifying and classifying Android

malware families than the combinations of CNN, CNN-KNN, and CNN-RF. The

CNN-SVM combination achieved a classification accuracy of 92.59% using Android

certificates and manifest file images. The experiments were done using the DREBIN

dataset.

(Marwaha et al., 2023) visualized all available combinations of

AndroidManifest.xml, Assets, AppObjectFactories, and AppCertification files and

compared their effects on binary classification. They trained VGG16 networks for 15

combinations of 4 files and shared the results with metrics such as accuracy, F1-score,

and ram usage for each. With 94.01% accuracy and 88.12% F1-score, the best results

were obtained using manifest and certificate files. In the experiments, RGB images

23

converted from the Drebin dataset were used for network training.

Although image transformation-based approaches are widely researched, audio

transformation-based approaches are only recently becoming widespread. By

converting the classes.dex file obtained from APK files to audio, studies that detect

malware and families use different audio-based attribute groups.

(Nataraj et al., 2021) investigated the interoperability of different attribute sets

in malware detection. Audio features, image similarity features, and some static and

statistical features were extracted, and orthogonality research was conducted on the

interoperability of these feature sets. The orthogonality of two feature sets to each

other was investigated with the JFS metric. JFS calculates based on the ratio of

common errors of two attribute sets. If the common errors of the two feature sets are

low, it is thought that the other will classify the samples that one cannot classify. In

this case, the JFS value of the two attribute sets will converge to 1. In the opposite

case, the JFS value will converge to 0 as errors will be common. In the tests, the

best results were obtained with 97% accuracy with audio-based attributes and Nearest

Neighbor. It has also been seen that audio-based features are more orthogonal with

other features. As a result, it is seen that the calculation of orthogonality is important

in the proper investigation of feature fusion. On the other hand, the results show that

JFS is insufficient for observing unbalanced datasets.

(Mercaldo & Santone, 2021) conducted audio-based Android malware detection

and family classification. Their proposed model consisted of two cascaded systems that

worked consecutively. The first model determined whether the incoming sample was

malicious or benign, and if the decision indicated maliciousness, the second model was

used for family classification. The dataset used in the study included 24,553 malware

samples (71 families) and 25,447 benign samples. The benign samples were obtained

by downloading applications from various categories of official stores and testing them

using Virus Total. To perform classification, the classes.dex files within the APK files

were converted into .wav format, and classical audio-based features were extracted to

obtain a feature vector for each application. The classification stages involved using

k-Nearest Neighbors (kNN), Support Vector Machines (SVM), Logistic Regression,

and a 4-layer Neural Network. All classifiers underwent 5-fold cross-validation. The

24

most successful result was the Neural Network, with a classification accuracy of 0.952

and a family detection accuracy of 0.922.

(Casolare, Iadarola, Martinelli, Mercaldo, & Santone, 2021) proposed an

Android malware family detection method using audio signal processing. The

suggested approach has applied audio-based feature extraction steps by converting the

classes.dex file to an audio file in .wav format. To observe the parsing of the extracted

features, the features are visualized with boxplots for different families. After each

application’s feature vectors were obtained, the training and testing processes were

carried out using RF, SGD classifiers, and two MLPs based on backpropagation. The

results of the experiment with the data set containing 4796 samples with ten classes,

which were created by combining different data sets, were shared. The best results

were obtained with the MLP-2 with 90% F-measure and 98.8% accuracy.

In their study (Tarwireyi, Terzoli, & Adigun, 2022), researchers utilized a

low-level BFCC feature extraction approach, representing the human hearing structure

more closely than MFCC. This choice was prompted by the observation that the

proper form of the transformed APK files resembled noise, hence the need for

noise-resistant attributes. The BFCC algorithm derives coefficients by segmenting the

waveform into parts and applying a series of high and low-pass filter combinations.

Experiments were conducted with CICAndMal2017 and CICMalDroid2020 datasets,

with data divided into 80% for training and 20% for testing. The researchers tested the

performance of 23 different Machine Learning algorithms and reported that the best

results were obtained with the RandomForest and ExtraTrees algorithms, achieving a

98.6% F-measure. Conversely, the worst general performance was reported with the

GaussianNb algorithm.

In 2023, (Tarwireyi, Terzoli, & Adigun, 2023) proposed a multi-audio

feature-fusion approach for detecting Android malware as they noticed insufficient

work in audio-based malware detection. This approach involved using MFCC, GFCC,

and BFCC together to obtain a 102-feature data vector. This study used the

biologically inspired GFCC coefficient for the first time in malware detection. The

CICAndMal2017 and CICMaldroid2020 datasets were used, and experiments were

conducted using 23 different classical machine-learning methods. They achieved the

25

best results by using all the features together (Classic + MFCC + BFCC + GFCC)

with the 102-feature LGBM classifier, and the reported best result was a 99.65%

F-measure on the CICMalDroid2020 dataset.

Apart from audio and image-based studies, different studies on Android malware

detection can be summarised as follows: (Atacak, Kılıç, & Doğru, 2022) proposed a

hybrid model that combines CNN and ANFIS (Adaptive network-based fuzzy inference

system). They employed CNN for feature extraction and ANFIS as a decision-maker

within their methodology, subsequently comparing these techniques with classical

machine learning algorithms. In their experiments utilizing two distinct datasets, the

highest results reported were a 92% F-score for the Drebin dataset and a 94.6% F-score

for the CICMalDroid2020 dataset.

(Calik Bayazit, Koray Sahingoz, & Dogan, 2023) compared the classification

performance of extracted feature groups with static and dynamic analysis methods on

different data sets. Classification processes were carried out with ten classifiers using

84 dynamic features from the CIC-AndMal2017 dataset and 8115 features from the

CIC-InvesAndMal dataset. The experiments performed with RF, DT, three different

ANNs, three different MLPs, LSTM and CNN-LSTM reported that the best result for

static data was obtained when LTSM was used with 98.75 accuracies. On the other

hand, for dynamic features, it has been reported that the best result is 95.3 accuracy

obtained with CNN-LSTM. It was shared that the lowest results were 91.64 accuracies

obtained with DT in static analysis and 85.3 accuracies obtained with ANN in dynamic

analysis.

(Memon, Unar, Ahmed, Daudpoto, & Jaffari, 2023) developed an Android

malware detection system based on semi-supervised machine learning. Application

permissions and API call logs are used as attributes in the study. A dataset of 54332

applications was used to test the proposed malware detection system. Both Google

Play Store and Virus Total were used to create this dataset. A feature set was made by

extracting 1488 permissions and API calls from these applications. 80% of the dataset

is reserved for training, while the remaining 20% is reserved for testing. In the study,

a semi-supervised Naive Bayes algorithm is proposed. In addition to this algorithm,

DT, SVM, RF, and KNN algorithms are also used to compare with the proposed

26

method. As a result of the evaluation of the test set, the highest performance was

obtained with the proposed semi-supervised NB algorithm. This result is 93.256%

according to the accuracy metric. The results obtained from other classifiers are DT

90.12%, SVM 88.23%, RF 82.45%, and KNN 86.35%, respectively.

(Yilmaz, Taspinar, & Koklu, 2022) proposed a permission-based Android

malware detection system. In the study, a dataset consisting of 2854 malicious and

2870 benign applications was used. A feature set was created with 116 permissions

extracted from all these applications. The numerical data obtained after the creation of

the feature set was classified by machine learning techniques. SVM and NB machine

learning techniques were used in the study. As a result of the classifications obtained

with ten cross-validations, 92.4% classification success was obtained with the NB

algorithm, while 90.9% classification success was obtained with the SVM algorithm.

(Q. Li, Chen, Li, et al., 2023) proposed a model that detects Android malware by

interpreting program instructions in library files as genes. The method obtains basic

block sequences from the instructions extracted from the library files, and size reduction

is performed with information gain. Then, semantic abstraction was performed with

word2vec to basic block sequences filtered with information gain. In the experiments

performed with the VirusShare 2018 dataset, 8000 malware and 2000 benign samples

were used, and experiments were carried out with different classifiers on the data.

The results produced using different information gain thresholds and word lengths are

shared in detail. It has been reported that the best result obtained in the experimental

results was obtained with DNN with 97.51 accuracy.

27

3 PRELIMINARIES

Permission-based approaches can show high performance in Android malware

detection. Vector representations are created for each application from the

permissions extracted by processing APK files. Then, classification steps are carried

out using classical machine-learning approaches. Using machine learning algorithms

makes the number of dimensions in the datasets an essential factor. Working with

high-dimensional data causes the training phases to take longer and may negatively

affect the classification performance. In this direction, researches on reducing the

number of features has been carried out. In (Şahin, Kural, Akleylek, & Kılıç, 2021c),

supervised and unsupervised dimension reduction techniques were examined. In the

comparisons, it was seen that LDA shortened the training time and increased the

classification performance. However, since LDA is a supervised technique, it is

unlikely to be applied to a real-time system. Therefore, other approaches that can be

applied in real-time systems were investigated. First, a linear regression-based feature

selection method was developed (Şahin, Kural, Akleylek, & Kılıç, 2021b). Then,

filtering-based feature selection methods were adapted to permission-based Android

malware detection (Şahin, Kural, Akleylek, & Kılıç, 2021a). In both approaches, the

number of features has been reduced by 80%, and it has contributed to the

classification performance. To increase the classification performance in static

approaches, besides eliminating low-related features with feature selection methods,

high-contribution features can be highlighted with term weighting methods in areas

such as text mining. In a similar approach, we adapted 14 different term weighting

methods to permission-based Android malware detection (Kural, Sahin, Akleylek, &

Kılıç, 2019). The details of the study are given in Section 3.1.

Many preprocessing steps are required to implement permission-based

approaches. However, permission-based methods do not offer a solution against

obfuscated malware and first-day attacks because they focus only on requested

permissions. In this context, a binary image transformation-based framework that

does not require preprocessing steps such as feature extraction in malware detection

has been researched (Kural et al., 2021). In the proposed framework, gray-level

images were obtained from APK files, and malware detection was carried out with

CNN. The details of the study are given in Section 3.2.

3.1 Permission Weighting Approaches in Permission Based Android

Malware Detection

Permission information from application manifest files is used for

permission-based Android malware detection. In classical permission-based studies,

application permissions are handled as binary according to whether the permission is

requested. This binary structure is also frequently used in text classification studies.

The terms in the texts are treated as binary. Although this indicates the presence of the

term in that class, it does not show the importance of the term for the class. For this

reason, terms are weighted with different term weighting methods. In this way,

besides the existence and non-existence of a word belonging to a certain category, the

importance of that term for the relevant class is also expressed. With a similar

approach, the importance of each permission for the benign and malware classes also

differs. In other words, as in text classification, the features’ weighting can positively

contribute to class distinction. With this motivation, we conducted a comparative

study by adapting the 14 term weighting method to permission-based Android

malware detection. The contributions of the study can be summarized as follows.

• 14 term weighting methods frequently used in text classification are adapted to

permission-based Android malware detection.

• By performing classification experiments with three classification algorithms, results

were obtained for each of the 14 cases. The results are shared in tables comparatively.

3.1.1 Proposed Method

This study adapted 14 different term weighting methods to permission-based

Android malware detection. Details of the term weighting methods are given in Section

3.1.1.1. The experiments were conducted using two different datasets. The first dataset

is the M0Droid dataset containing 200 benign and 200 malicious samples (Damshenas,

Dehghantanha, Choo, & Mahmud, 2015). The second dataset consists of 2000 malware

samples randomly taken from the AMD dataset and 1000 benign samples downloaded

from Google Play Store (Google play store, 2023).

29

3.1.1.1 Term Weighting Methods

Term weighting is an expression that represents the proximity of a term to the

content of a document. In our scenario, each term is permission, and each term weight

is how much permission relates to the space of sample applications. Some basic

expressions are used when calculating the term weight for a term. These are:

𝑎: Number of malware applications that requested the 𝑝 𝑗 permission,

𝑏: Number of malware applications that did not request the 𝑝 𝑗 permission,

𝑐: Number of benign applications that requested the 𝑝 𝑗 permission,

𝑑: Number of benign applications that did not request the 𝑝 𝑗 permission,

𝑁: Total number of applications, calculated as 𝑁 = (𝑎 + 𝑏 + 𝑐 + 𝑑)

Using these notations, the term weighting methods and formulas used in the study

are given in this section.

IDF: A metric that measures how common a term is in a document type. In the

assumption for permissions, the rarer permission is in a positive class, the higher its

value (Salton & Buckley, 1988). The IDF is calculated as in Equation 3.1.

𝐼𝐷𝐹 = 𝑙𝑜𝑔

(
𝑁

𝑎 + 𝑐

)
(3.1)

CHI: CHI is a metric commonly used in statistics that measures how different

(independent) data are from an expected distribution. When used for permissions, it

indicates how much a 𝑝 𝑗 permission is associated with a class. The calculation of CHI

is shown in Equation 3.2.

𝐶𝐻𝐼 = 𝑁 ∗
(

((𝑎 ∗ 𝑑) − (𝑏 ∗ 𝑐))2

(𝑎 + 𝑐) ∗ (𝑏 + 𝑑) ∗ (𝑎 + 𝑏) ∗ (𝑐 + 𝑑)

)
(3.2)

OR: It is a metric that considers the distribution of the term between classes

(Lan, Tan, Su, & Lu, 2008). The OR is calculated as in Equation 3.3.

30

𝑂𝑅 = 𝑙𝑜𝑔

(
𝑎 ∗ 𝑑
𝑏 ∗ 𝑐

)
(3.3)

RF: RF is a metric that focuses on the presence of a term in categories (Lan et

al., 2008). Its main logic is that the more a high-frequency term is concentrated in the

positive category relative to the negative category, the more it contributes to selecting

positive samples from negative samples. The calculation of RF is given in Equation

3.4.

𝑅𝐹 = 𝑙𝑜𝑔

(
2 + 𝑎

𝑚𝑎𝑥(1, 𝑐)

)
(3.4)

MI: The amount of knowledge that may be gleaned from one random variable

given another is measured by a concept known as mutual information. It is used in both

term weighting and feature selection. The calculation of MI is given in Equation 3.5.

𝑀𝐼 = 𝑙𝑜𝑔

(
𝑁

𝑎

(𝑎 + 𝑏) ∗ (𝑎 + 𝑐)

)
(3.5)

TGF: It is a metric that expresses the total number of times the term is used in

classes (Maisonnave, Delbianco, Tohmé, & Maguitman, 2019). Indicates the number

of times permission is used in malware and benign instances in weighting permissions.

The TGF is calculated as in Equation 3.6.

𝑇𝐺𝐹 = 𝑎 + 𝑐 (3.6)

IDFEC: It is a supervised variant of the IDF. Its basic logic is to avoid reducing

the weight of terms that appear in the same category more than once (Domeniconi,

Moro, Pasolini, & Sartori, 2015). The IDFEC is calculated as in Equation 3.7.

31

𝐼𝐷𝐹𝐸𝐶 = 𝑙𝑜𝑔

(
𝑐 + 𝑑
𝑐

)
(3.7)

GSS: The Galavotti-Sebastiani-Simi (GSS) metric was first proposed as a feature

selection method (Galavotti, Sebastiani, & Simi, 2000). This metric is proposed as

a simplified variation of the CHI metric. This metric is also used in term weighting

studies (Maisonnave et al., 2019). It is proposed on the principle that negative instances

contribute to the classification contribution of terms. The GSS is calculated as in

Equation 3.8

𝐺𝑆𝑆 = 𝑙𝑜𝑔

(
2 + 𝑎 + 𝑐 + 𝑑

𝑐

)
(3.8)

IG: The amount of information that a term’s existence or absence adds to the

process of correctly classifying a subject into a category is measured by IG. This metric

is used as a feature selection method as well as a term weighting method (Lan et al.,

2008; Maisonnave et al., 2019). The feature selection method answers the question of

how much information the term contains from the categories. A similar approach is

seen in term weighting. The calculation of IG is given in Equation 3.9.

𝐼𝐺 =
𝑎

𝑁
∗ log

𝑎 ∗ 𝑁
(𝑎 + 𝑐) ∗ (𝑎 + 𝑏) +

𝑏

𝑁
∗ log

𝑏 ∗ 𝑁
(𝑏 + 𝑑) ∗ (𝑎 + 𝑏)

+ 𝑐
𝑁
∗ log

𝑐 ∗ 𝑁
(𝑎 + 𝑐) ∗ (𝑐 + 𝑑) +

𝑑

𝑁
∗ log

𝑑 ∗ 𝑁
(𝑏 + 𝑑) ∗ (𝑐 + 𝑑)

(3.9)

GR: Gain Ratio introduces a normalization term termed intrinsic information in

an effort to reduce the bias of IG for heavily branching predictors. The calculation of

GR is given in Equation 3.10.

𝐺𝑅 =
𝐼𝐺

−
(
𝑎+𝑏
𝑁

)
∗ log

(
𝑎+𝑏
𝑁

)
−
(
𝑐+𝑑
𝑁

)
∗ log

(
𝑐+𝑑
𝑁

) (3.10)

32

DESCR: It expresses how much a term describes a class. The basic logic of

the metric is that the more instances a term has in a class, the better a descriptor for

that class (Maisonnave et al., 2019). Therefore, the instances passed in a class are

calculated as all instances for that class. For permissions, it is the ratio of malware

instances where permission is passed to the total number of malware instances. The

DESCR is calculated as in Equation 3.11.

𝐷𝐸𝑆𝐶𝑅 =
𝑎

𝑎 + 𝑏
(3.11)

DISCR: Represents how distinctive a term is for a class. Represents how

distinctive a term is for a class (Maisonnave et al., 2019). It works with the logic that

the more a term is specific to a class (only in that class), the more distinctive it is for

that class. The DISCR is calculated as in Equation 3.12.

𝐷𝐼𝑆𝐶𝑅 =
𝑎

𝑎 + 𝑐
(3.12)

FDD: It is a metric created by combining DESCR and DISCR metrics

(Maisonnave et al., 2019). The FDD is calculated as in Equation 3.13.

𝐹𝐷𝐷 =
(1 + 𝑏𝑒𝑡𝑎)2 ∗ 𝐷𝐼𝑆𝐶𝑅 ∗ 𝐷𝐸𝑆𝐶𝑅
𝑏𝑒𝑡𝑎2 ∗ 𝐷𝐼𝑆𝐶𝑅 + 𝐷𝐸𝑆𝐶𝑅

(𝑏𝑒𝑡𝑎 = 0, 477) (3.13)

3.1.1.2 Experimental Results

This section reports the classification results obtained from weighting the

samples in M0Droid and AMD datasets with 14 different term weighting methods.

The classification results obtained with M0Droid are reported in Tables 3.1 and 3.2.

The results obtained with the AMD data set are given comparatively in Tables 3.3 and

3.4.

33

In experiments with the M0Droid dataset, the most successful classification

results were obtained with SVM. In classifications made with SVM, the most

successful results were obtained with DISCR-weighted data. The performance

obtained with DISCR weighted data is 0.873 accuracy and 0.882 F-measure. IG and

GR are the weighting techniques that affect the classification performance worst in

SVM. In classifications with data weighted with IG and GR, accuracy and Fmeasure

decreased by more than -5% compared to other term weighting techniques. It is seen

that the results obtained in the experiments with other term weighting methods are

pretty close to each other.

The best classification result with KNN was obtained with data weighted with

IDF. When using IDF, the performance of the KNN classifier is 0.854 accuracy and

0.850 F-measure. After IDF, the highest performance was achieved with IDFEC,

a variant of IDF. In the experiments with the data weighted with IDF in the KNN

classifier, +5% better results were obtained than the classification made with binary

data.

When the classification results with NB were examined, 0.791 accuracy and

0.804 F-measure were obtained with the NB classifier in the data weighted with the

TGF weighting technique. It is seen that the classification performance obtained with

NB is lower than the results obtained with SVM and KNN.

When Tables 3.3 and 3.4 are examined, it is seen that the most successful result

in the AMD dataset is obtained when classification is made with the SVM algorithm.

The best results obtained are 0.963 accuracy and F-measure 0.948. MI and RF are the

other two-term weighting methods in which the SVM algorithm performs well. The

lowest performances with SVM were obtained in TGF. All methods except TGF and

CHI show accuracy over 0.90, while TGF remains at 0.83. All other weighting methods

showed similar results with SVM.

When KNN is used, the highest accuracy was obtained with the OR weighting

method. The OR weighting method measured 0.959 accuracies and 0.939 F-measure

classification performance. The highest performance after OR was obtained when

using GR and IG.

The most successful results obtained with the NB algorithm were obtained with

34

Table 3.1. M0Droid dataset classification results by accuracy

Method KNN NB SVM

Binary 0,8 0,7814 0,8680
IDF 0,8546 0,7596 0,8310
CHI 0,7932 0,7807 0,8235
OR 0,8226 0,7709 0,8151
RF 0,8319 0,7857 0,8437
MI 0,8445 0,7746 0,8201

TGF 0,8084 0,7910 0,8294
IDFEC 0,8512 0,7864 0,8403

GSS 0,8445 0,7779 0,8386
IG 0,7798 0,7892 0,7336
GR 0,7857 0,7854 0,7403

DESCR 0,7815 0,7508 0,8193
DISCR 0,8395 0,7794 0,8739

FDD 0,8008 0,7839 0,8563

Table 3.2. M0Droid dataset classification results by F-measure

Method KNN NB SVM

Binary 0,78 0,7915 0,872
IDF 0,85 0,7673 0,8234
CHI 0,7830 0,7909 0,8367
OR 0,8158 0,7882 0,8325
RF 0,8268 0,7960 0,8455
MI 0,8463 0,7874 0,8429

TGF 0,8079 0,8041 0,8291
IDFEC 0,8459 0,7949 0,8384

GSS 0,8432 0,7882 0,8416
IG 0,7708 0,8069 0,7835
GR 0,7792 0,8068 0,7872

DESCR 0,7866 0,7813 0,8233
DISCR 0,8348 0,7943 0,8823

FDD 0,7996 0,7950 0,8612

FDD and DESCR. With these weighting methods, 0.947 accuracies and 0.924

F-measure performance were obtained. All weighting methods showed very close

results when the results obtained with the NB algorithm were examined.

When the results obtained with different classifiers are compared, it is seen that

the difference created by term weighting in the results is quite low. It is concluded

that a term frequency multiplier is needed for the scenario in which the term weighting

35

Table 3.3. AMD dataset classification results by accuracy

Method KNN NB SVM

Binary 0,9315 0,9421 0,9632
IDF 0,9300 0,9469 0,9585
CHI 0,9488 0,9459 0,8889
OR 0,9591 0,9452 0,9600
RF 0,9327 0,9446 0,9611
MI 0,9412 0,9451 0,9628

TGF 0,9429 0,9468 0,8335
IDFEC 0,9222 0,9453 0,9576

GSS 0,9336 0,9423 0,9572
IG 0,9488 0,9456 0,9199
GR 0,9511 0,9450 0,9172

DESCR 0,9365 0,9474 0,9235
DISCR 0,9214 0,9453 0,9547

FDD 0,9326 0,9472 0,9545

Table 3.4. AMD dataset classification results by F-measure

Method KNN NB SVM

Binary 0,8925 0,9155 0,9284
IDF 0,897 0,9219 0,9416
CHI 0,9239 0,9213 0,8491
OR 0,9399 0,9201 0,9436
RF 0,8977 0,9198 0,9455
MI 0,9149 0,9198 0,9475

TGF 0,9175 0,9222 0,7880
IDFEC 0,8810 0,9204 0,9399

GSS 0,8984 0,9158 0,9392
IG 0,9237 0,9206 0,8894
GR 0,9271 0,9201 0,8855

DESCR 0,9084 0,9249 0,8889
DISCR 0,8808 0,9202 0,9360

FDD 0,9027 0,9230 0,9362

method is used.

3.2 Apk2Img4AndMal: Android Malware Detection Framework Based on

Convolutional Neural Network

With the increasing number of malware targeting Android operating systems,

there is a growing need for innovative detection methods to effectively identify these

36

malicious entities. For these reasons, designing new detection methods attracts the

attention of researchers. In the malware detection methods specific to Android

operating systems, the features extracted mainly through dynamic or static analysis are

evaluated through machine learning, and it is decided whether the application is

benign or malicious. While feature extraction is easy in static analysis approaches,

they are not sensitive to threats like code obfuscation. However, feature extraction is

troublesome in the dynamic analysis approach since the application is run on an actual

device or a virtual machine. Also, one of the significant disadvantages of dynamic

analysis is that some malicious applications can act as benign applications by hiding

their malicious behaviors when running on virtual machines or sandboxes outside the

device. These analyses led us to investigate an end-to-end detection method for

Android malware detection.

• An alternative framework for Android malware detection without knowing the

structure and details of APK files is proposed.

• By transforming each APK file into grayscale images, applications are classified with

CNN, which is highly skilled in image classification.

• The proposed framework can be used alone or in hybrid models with dynamic/static

analysis models. The detection method can be enriched by using dynamic or static

analysis models.

3.2.1 Proposed Framework

In this section, the infrastructure of the proposed framework will be mentioned.

There are two basic parts of the proposed framework. The proposed framework is

given in Figure 3.1. The first part is the image creation phase. The image creation steps

consist of a series of steps that produce a grayscale image by reading the raw APK file.

These steps are:

• Read APK file as binary

• Convert binary sequences to numbers (0-255)

• Scale data size to 1 × 10000 and get 1 × 10000 vector

• Reshape the 1 × 10000 to be 100 × 100

• Save the obtained data as an image file

37

Figure 3.1. The proposed Android malware detection framework

The second part is the classification phase, where the CNN is trained and tested

with the generated images. A CNN consisting of 8 hidden layers was created and used

for classification at this stage. When the application framework is considered in general,

it is seen that it is not necessary to know the general structure of the APK files or the

malware analysis techniques for analysis operations. Since the APK files are used as

a whole, there is no need to know the files, such as classes.dex, AndroidManifest.xml

it contains or what information they have. From this point of view, the application

framework we recommend ensures that even people with fundamental knowledge of

Android malware analysis are included in the analysis processes.

3.2.2 Experimental Settings

In this section, we detail the experimental setup used in this study, including a

description of the utilized dataset and an explanation of the CNN.

3.2.2.1 Used Data Set

In this study, we used Android Malware Dataset (AMD). There is 24588 Android

malware in this dataset (Wei et al., 2017). There are also 3000 benign applications

38

that we have downloaded. Benign applications are downloaded from the APKpure site

(APKPure Android Application Store, 2023).

3.2.2.2 Convolutional Neural Network

Deep learning, a subset of machine learning techniques, aims to learn the

distributed representations of raw data along with its high-level structures using

hierarchical layers. Over recent years, with the advent of efficient usage of graphic

processors and the decline in hardware costs, deep learning has found its application

in various fields, such as voice recognition, natural language processing, and image

classification. CNN, a specific type of deep learning technique, has gained significant

attention from researchers. CNNs can be utilized for feature extraction (Chen, Jiang,

Li, Jia, & Ghamisi, 2016), classification (Wei et al., 2016), and clustering (Hsu & Lin,

2018).

Typically, a CNN comprises three types of layers: convolutional, pooling, and

fully connected. Each layer carries out different tasks. Each layer has different tasks.

The convolutional layer is responsible for extracting the features of the image using

various filters. Following the convolutional layer, a pooling layer is applied, which

performs dimensionality reduction by selecting the most prominent features. The final

layer, known as the fully connected layer, functions similarly to an artificial neural

network, performing the classification task.

3.2.2.3 Experimental Results

In this section, the results obtained in the experiments are interpreted. The study

uses deep learning models in different layers and neuron structures. The models used

and the performance of each model are given in Table 3.5.

When the results obtained on the network models consisting of different layers

are examined, the highest performance obtained in the classification of benign and

malicious applications is 94.13%, according to the accuracy metric. The network

model with the highest performance consists of 4 layers. The number of neurons

in these four layers is 32, 32, 64, and 64, respectively. The result with the lowest

classification performance is determined as 85.12%. This result is obtained from the

39

Table 3.5. Results of the proposed framework

No. of layers No. of Neurons Validation
Accuracy (%)

Test
Accuracy (%)

2 32, 32 99.53 85.12
2 64, 64 99.43 89.5
3 32, 32, 64 99.45 94.05
3 64, 64, 64 99.63 91.3
4 32, 32, 64, 64 99.43 94.13
4 64, 64, 64, 64 99.76 93.32
4 64, 64, 128, 128 99.72 93.61

network model consisting of 2 layers. The number of neurons in each layer in this

network model is 32. Similarly, in another network model composed of 2 layers, 89.5%

performance is achieved. In general, it is seen that it is not enough to classify this

dataset with network models consisting of 2 layers. When the number of layers is 3,

two different experiments are performed. The results from these experiments were

94.05% and 91.3%, respectively. When the number of layers is 4, it is seen that the

most appropriate classification results are obtained for this data set. In models with

four layers, the lowest performance is 93.61%.

40

4 AN EXTENSIVE EXPERIMENTAL STUDY FOR
ANDROID MALWARE DETECTION: INVESTIGATION
OF THE EFFECT OF STATIC FEATURE GROUPS ON
CLASSIFICATION PERFORMANCE

This chapter presents a comprehensive exploration of various combinations of

features frequently employed in static Android malware detection. The impacts of

feature sets on classification performance will be examined, employing diverse datasets

and classifiers, and the corresponding results will be shared.

4.1 Motivation

A large number of feature sets are extracted in Android malware detection based

on static analysis. It is reported that 16 static feature groups are widely used in malware

detection in the survey study of (Q. Wu, Zhu, & Liu, 2021). The most preferred among

these 16 feature groups are API calls, Native opcodes, and application permissions. In

the survey study of (Pan, Ge, Fang, & Fan, 2020), which includes static analysis studies,

it is emphasized that researchers mostly prefer API calls and application permissions

as static features. In the survey study of (T. Sharma & Rattan, 2021), 10 different static

feature groups are considered. It is stated that these are frequently used by researchers in

Android malware detection. There are similar situations in the survey studies of (Jusoh

et al., 2021) and (Alzubaidi, 2021), and it is seen that different feature set selections are

made in the researches. Considering previous studies, determining which feature set(s)

is more effective in classification performance in Android malware detection is one of

the open problems in this field. Studies examining the effect of static feature groups

on classification performance are quite limited. Researchers who want to develop an

Android malware detection framework based on static analysis are also unsure about

which feature groups they should use, so they usually consider the most commonly

used feature group to develop the framework. In this context, this study answers the

question of which static feature groups are more effective in classification performance

with extensive experiments. In the study, API call signature, Intent filters, Manifest

permission, and Command signature feature groups, which are frequently used by

researchers in survey studies, are handled, and 15 different static feature combinations

are evaluated under 2 different data sets. In addition, conversion to RGB images is made

by combining static feature groups under different conditions. RGB images are used

together with convolutional neural network (CNN) techniques to detect malware. By

making performance comparisons between the classification of static features directly

with classical machine learning techniques and the classification of RGB images with

CNN, the question of what advantages and disadvantages these two techniques have

compared to each other will be answered.

4.2 Contribution

The main contributions of the study are as follows:

• Many features are extracted with static analysis and evaluated by machine learning.

Using all of these features sometimes works well. Even if good results are obtained,

giving a large number of inputs to machine learning algorithms will increase the

computational cost of the algorithm and reduce its efficiency. In this study, precise

results are given to researchers about which static feature groups are more effective

in malware classification.

• Four static feature groups are examined in this study. These feature groups are API

call signature (ACS), Intent filters (I), Manifest permission (MP), and Command

signature (CS). A total of 15 different situations are evaluated, and comprehensive

experiments are presented to the researchers.

• Experiments were carried out with 10 different classifiers, and the results were

observed for all scenarios. It is observed that the feature groups give similar results in

both data sets. In addition, this compatibility is seen in all classification algorithms.

With this inference, generalization is made according to the use cases of feature

groups.

• Converting APK files to images has been very popular in recent years. In this

study, RGB images are obtained with static analysis groups, and the classification

of malicious software is made with CNN. When comparing the results based on

the direct use of static features with the classification of the images, the highest

performance is above 99% in both cases. It is also reported that small-size rendering

has little effect on improving classification performance.

• Finally, to see the performance of the feature sets on samples they have not seen

42

before, the results were shared by giving different data sets in the experiments with

CNN in training and testing. The scenarios in which the training was performed with

Drebin, the test with the Malgenome dataset, the training with Malgenome, and the

test with Drebin were shared as test F-scores.

4.3 Experimental Design

This section consists of 4 subsections. In the first subsection, the metrics used

to compare the performance of machine learning algorithms will be discussed. In the

second subsection, the datasets used will be introduced. In the third subsection, static

feature groups and the combinations created from these groups will be introduced.

Finally, in the fourth subsection, the RGB image transformation algorithm obtained by

utilizing static properties will be emphasized.

4.3.1 Used Datasets

In this study, we utilized two different datasets: Drebin (Arp et al., 2014) and

Malgenome (Zhou & Jiang, 2012). The original versions of these datasets lack benign

samples. However, modified versions of these datasets were created by (Yerima &

Sezer, 2018) with additional benign samples. The Drebin dataset contains 15036

applications with the added benign samples, 5560 of which are malware and 9476

benign. Similarly, the Malgenome dataset contains 3799 applications, 1260 of which

are malware and 2539 are benign.

4.3.2 Feature Set Combinations

In this study, features extracted from APKs with static analysis techniques were

used. These features are as follows:

• Applications Permissions (MP): Android apps can request particular permissions,

which the user must grant. Depending on the rights it has, the software can access

various resources (camera, microphone, location, gallery, etc.) and perform specific

activities. Permissions are specified using the uses-permission tags in

AndroidManifest.xml.

• API Call Signature (ACS): The Android application development platform has

various APIs. These APIs allow apps access to system functions, device

43

functionalities, and features of other apps. For example, the camera API allows an

application to use the device’s camera. APIs are used by developers and are

available in the form of Java classes and functions.

• Intent Filter (I): Intents allow Android applications to communicate with one

another. The intent is a request for an action from another component (activity,

service, broadcast receiver, etc.). The Intent Filter specifies which types of Intents

an application can process and which components can receive those Intents. It is

defined using the intent-filter element in the AndroidManifest.xml file.

• Command signature (CS): There are two kinds of commands. These are the root

and botnet commands. Some root commands like ”cp,” ”cat,” ”kill,” and ”mount”

originated on Unix. Unix administrators use these commands to do various tasks.

Because of the Android operating system’s Unix background, some root commands

can be found in Android applications. Furthermore, malware authors frequently use

root commands to manage their target machines. Because of this, root commands

are critical for malware identification. The reverse engineering method is used to

recover the root instructions utilized by applications from Java source files.

Table 4.1. Feature count distribution across datasets and categories

Count
Feature Set Drebin Malgenome

ACS 73 72
MP 113 112

I 23 25
CS 6 6

ACS + MP 186 184
ACS + I 96 97

ACS + CS 79 78
MP + I 136 137

MP + CS 119 118
I + CS 29 31

ACS + MP + I 209 209
ACS + MP + CS 192 190

ACS + I + CS 102 103
MP + I + CS 142 143

ACS + MP + CS + I 215 215

These components are essential building blocks within the Android application

file (APK) and ensure applications’ functionality, security, and interaction with other

44

applications. The distribution of these feature groups over the data sets is given in

Table 4.1.

All possible combinations were tried to measure the contribution of all feature

groups to the classification performance. The feature group consisting of 15 different

states,
(4
4
)
+
(4
3
)
+
(4
2
)
+
(4
1
)
, will be evaluated by classification algorithms. The structure

that enables all these combinations to be obtained is shown in Algorithm 1.

Algorithm 1 Obtaining feature combinations
Input: 𝐷 [𝑁, 𝑘], 𝐹 [𝑘, 2]

1: 𝑁 is total number of applications. 𝑁1, 𝑁2 . . . 𝑁𝑁 represents application ID. 𝑘 is
total number of features. 𝑘1, 𝑘2 . . . 𝑘𝑘 represents name of feature. 𝐷 [𝑁, 𝑘] is
full dataset. 𝐹 [𝑘, 2] is the matrix holding the feature name and feature group
information.

Output: Obtaining a sub-dataset containing all combinations
2: Function 𝑂𝑏𝑡𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑢𝑏𝑑𝑎𝑡𝑎𝑠𝑒𝑡(𝐷 [𝑁, 𝑘], 𝐹 [𝑘, 2])
3: generate all combination list
4: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 𝑔𝑟𝑜𝑢𝑝 ← 4
5: 𝑐𝑜𝑚𝑏 𝑙𝑖𝑠𝑡 ←

(4
4
)
+
(4
3
)
+
(4
2
)
+
(4
1
)

6: for 𝑖 = 1 to size(𝑐𝑜𝑚𝑏 𝑙𝑖𝑠𝑡) do
7: 𝑘 𝑙𝑖𝑠𝑡 ← ∅
8: for 𝑗 = 1 to 𝑘 do
9: if is 𝐹 [𝑗 , 2] an element of 𝑐𝑜𝑚𝑏 𝑙𝑖𝑠𝑡𝑖 then

10: 𝑘 𝑙𝑖𝑠𝑡 ← 𝑘 𝑗 ⊲ 𝑘 𝑗 ≡ 𝐹 [𝑗 , 1]
11: end if
12: end for
13: select and save columns in 𝑘 𝑙𝑖𝑠𝑡 in matrix 𝐷 [𝑁, 𝑘]
14: end for
15: return all combinations
16: end Function

4.3.3 Image Transformation

We created image representations for each feature set combination to train the

static data with the CNN. By representing each feature set in the combination in a color

channel of the RGB image, we obtained visual representations for each sample. While

determining the image size, we took the most extensive set in the combination and

rounded it to the nearest value that can be represented in square form. For example, for

ACS+MP+I, we rounded to the closest square value based on the MP with the highest

number of features in the combination. We obtained 11x11 image representations by

rounding off the 112 feature number of MP to 121, which is the nearest square value.

45

The image generation process is shown in Algorithm 2. In representations consisting

of a single feature set, we printed the values of the relevant feature set to all channels.

We did not create visuals for the ’CS’, ’I’, and ’I+CS’ cases, as the image samples are

too small in the samples with only the CS and I feature sets. The created images’ color

channels and dimensions are given in Table 4.2. The sample images created are shared

in Figure 4.1a and Figure 4.1b.

Algorithm 2 RGB image generation
Input: 𝐴𝐶𝑆[𝑁, 𝑎], 𝑀𝑃[𝑁, 𝑏], 𝐼 [𝑁, 𝑐], 𝐶𝑆[𝑁, 𝑑]

1: 𝑁 is total number of applications. 𝑁1, 𝑁2 . . . 𝑁𝑁 represents application ID. 𝑎 is the
total number of API features. 𝑏 is the total number of MP features. 𝑐 is the total
number of I features. 𝑑 is the total number of CS features. 𝐷 [𝑁, 𝑘] is full dataset.

Output: Obtaining all combinations of RGB images
2: Function 𝑂𝑏𝑡𝑎𝑖𝑛𝑖𝑛𝑔𝑅𝐺𝐵𝐼𝑚𝑎𝑔𝑒(𝐴𝐶𝑆[𝑁, 𝑎], 𝑀𝑃[𝑁, 𝑏], 𝐼 [𝑁, 𝑐], 𝐶𝑆[𝑁, 𝑑])
3: generate all combination list
4: 𝑐𝑜𝑚𝑏 𝑙𝑖𝑠𝑡 ←

(4
4
)
+
(4
3
)
+
(4
2
)
+
(4
1
)

5: for 𝑖 = 1 to size(𝑐𝑜𝑚𝑏 𝑙𝑖𝑠𝑡) do
6: find the max size (ms) in the 𝑐𝑜𝑚𝑏 𝑙𝑖𝑠𝑡 (𝑖)
7: round the ms to the nearest perfect square number (sn)
8: create a square blank image of size

√
𝑠𝑛

9: insert the values of each element in comb list(i) into channel R, G, B
respectively.

10: end for
11: return all RGB images
12: end Function

Table 4.2. Color channel assignments for feature set combinations

Color Channels
Feature Sets R G B Image Size
ACS ACS ACS ACS 9x9
MP MP MP MP 11x11
ACS - MP ACS MP - 11x11
ACS - I ACS I - 9x9
ACS - CS ACS CS - 9x9
MP - I MP I - 11x11
MP - CS MP CS - 11x11
ACS - MP - I ACS MP I 11x11
ACS - MP - CS ACS MP CS 11x11
ACS - I - CS ACS I CS 9x9
MP - I - CS MP I CS 11x11
ACS - MP - I + CS ACS MP I+CS 11x11

46

(a) Sample image from ACS (b) Sample image from 𝐴𝐶𝑆 𝑀𝑃 𝐼+CS

Figure 4.1. Generated image samples

4.4 Experimental Results

In this section, the results obtained from the data sets will be presented. Since

two different datasets are used in the study, the results of each dataset will be explained

under the relevant subsections. In the study, results are obtained with 11 different

classification algorithms, including traditional machine learning and CNN from deep

learning techniques. Predefined parameters are used for conventional machine learning

algorithms. For CNN, results were obtained at different layers and parameters. In the

following sections, the architecture of the CNN model created will be given. The sklearn

(scikit-learn) library is used for traditional machine learning algorithm (Pedregosa et

al., 2011; scikit-learn: machine learning in Python scikit-learn 1.2.2 documentation,

2023). Keras library is used for CNN (Keras: Deep Learning for humans, 2023). All

classification algorithms are evaluated with 10-fold cross-validation, and the average is

given.

4.4.1 Malgenome Results

The results obtained with the combination of 10 different classifiers and 15 feature

sets belonging to the Malgenome dataset are shared in Table 4.3 and Table 4.4. When

the individual comparisons of the feature sets were examined, it was observed that

the best result was obtained with ACS. After ACS, the most successful result was

obtained with MP. Although the feature number of ACS is relatively low compared

47

to MP (72-112), better results were obtained in all classifiers. The results indicated

that both I and CS yielded lower performances compared to ACS and MP. Notably, in

the scenario where CS was used independently, the maximum accuracy achieved was

0.786.

Table 4.3. Accuracy-based classification results on Malgenome dataset

K
N

N

C
4.

5

Li
bS

V
M

N
B

R
F

M
LP

A
da

Bo
os

t

X
G

Bo
os

t

LR LD
A

ACS 0,975 0,977 0,984 0,829 0,986 0,989 0,976 0,989 0,980 0,966
MP 0,966 0,966 0,973 0,639 0,978 0,975 0,947 0,973 0,949 0,945
I 0,863 0,867 0,867 0,501 0,867 0,867 0,852 0,866 0,858 0,842
CS 0,431 0,786 0,786 0,761 0,786 0,786 0,761 0,786 0,760 0,762
ACS+MP 0,982 0,982 0,989 0,812 0,991 0,990 0,983 0,991 0,987 0,980
ACS+I 0,974 0,976 0,985 0,815 0,987 0,989 0,976 0,989 0,979 0,973
ACS+CS 0,976 0,978 0,987 0,840 0,988 0,989 0,982 0,990 0,981 0,973
MP+I 0,962 0,968 0,972 0,664 0,980 0,975 0,949 0,976 0,958 0,952
MP+CS 0,978 0,969 0,978 0,641 0,986 0,981 0,959 0,982 0,969 0,961
I+CS 0,871 0,891 0,894 0,518 0,893 0,893 0,866 0,893 0,869 0,859
ACS+MP+I 0,983 0,982 0,988 0,813 0,991 0,991 0,985 0,990 0,987 0,981
ACS+MP+CS 0,985 0,981 0,989 0,817 0,992 0,991 0,985 0,993 0,988 0,979
ACS+I+CS 0,979 0,979 0,987 0,822 0,989 0,990 0,983 0,992 0,982 0,973
MP+I+CS 0,978 0,972 0,980 0,665 0,986 0,982 0,962 0,982 0,972 0,963
ACS+MP+I+CS 0,985 0,982 0,989 0,817 0,992 0,992 0,983 0,992 0,988 0,980

Table 4.4. F-measure based classification results on Malgenome dataset

K
N

N

C
4.

5

Li
bS

V
M

N
B

R
F

M
LP

A
da

Bo
os

t

X
G

Bo
os

t

LR LD
A

ACS 0,972 0,974 0,982 0,823 0,984 0,987 0,973 0,988 0,977 0,961
MP 0,961 0,961 0,969 0,638 0,975 0,972 0,940 0,969 0,942 0,937
I 0,849 0,853 0,853 0,491 0,853 0,853 0,837 0,852 0,843 0,827
CS 0,399 0,706 0,706 0,691 0,706 0,706 0,691 0,706 0,691 0,692
ACS+MP 0,980 0,980 0,987 0,806 0,990 0,988 0,981 0,990 0,985 0,977
ACS+I 0,971 0,973 0,983 0,810 0,986 0,988 0,973 0,987 0,977 0,970
ACS+CS 0,973 0,975 0,985 0,833 0,986 0,988 0,979 0,989 0,978 0,969
MP+I 0,957 0,964 0,968 0,663 0,978 0,972 0,942 0,973 0,952 0,946
MP+CS 0,975 0,966 0,975 0,641 0,984 0,979 0,954 0,979 0,965 0,956
I+CS 0,851 0,879 0,882 0,510 0,882 0,881 0,845 0,882 0,848 0,839
ACS+MP+I 0,980 0,980 0,986 0,807 0,990 0,989 0,983 0,989 0,986 0,978
ACS+MP+CS 0,983 0,978 0,987 0,811 0,990 0,990 0,983 0,992 0,986 0,977
ACS+I+CS 0,976 0,977 0,985 0,817 0,988 0,988 0,981 0,990 0,980 0,969
MP+I+CS 0,975 0,969 0,977 0,665 0,984 0,980 0,957 0,979 0,968 0,957
ACS+MP+I+CS 0,983 0,979 0,988 0,811 0,990 0,990 0,981 0,991 0,987 0,978

When the binary combinations were examined, it was seen that the most

48

successful pair was ACS+MP. The best result of this duo is 0.991 accuracy achieved

with both RF and XGBoost. Then the highest result is 0.990 accuracy obtained with

ACS+CS. Although the number of features of CS is relatively low, it has been

observed to contribute higher than I in the binary combinations formed with ACS and

MP. Even between ACS+CS and ACS+MP pairs, the classification performance of CS

is very close, although the feature number of CS is relatively low compared to MP

(6-112).

Considering the triple and quadruple combinations, the best result was 0.993

accuracy using ACS+MP+CS feature combination and XGBoost classifier. It has also

been observed that performance above 0.990 can be achieved in different classification

combinations. When examined in general, the results are pretty high, except for the

classification results with NB.

When Table 4.3 is considered in general, it is seen that single and double

combinations can give very close results to triple and quadruple combinations. The

best result across the table is 0.993 accuracy obtained with ACS+MP+CS.

Considering all classification algorithms, it was seen that the highest

performances for different combinations were obtained with RF, MLP, and XGBoost

algorithms.

Figure 4.2. Graphical representation of classification results on Malgenome dataset

The classification results of Malgenome are visualized in Figure 4.2. When

Figure 4.2 is examined, it is seen that almost all classifiers show similar tendencies

49

according to their feature sets. The breakdowns in the graph show that nearly all

classifiers exhibit identical behavior for sets. For example, ACS performance is higher

than MP in all classifiers.

In an effort to evaluate classification performance across various tools, we

replicated the ACS features and MLP classifier scenario, previously recognized for its

notable success in single evaluations, using Weka (Witten & Frank, 2002). Results

revealed that the performance derived from this approach was closely aligned with the

results from experiments executed in Python, with only minor differences observed.

Detailed classification results are given in Table 4.5.

Table 4.5. Classification results using MLP classifier with ACS features on Malgenome dataset

TP Rate FP Rate Precision Recall F-Mesure Class
0,981 0,011 0,978 0,981 0,979 Malware
0,989 0,019 0,991 0,989 0,990 Benign

Average 0,986 0,016 0,986 0,986 0,986

4.4.2 Drebin Results

The results obtained with Drebin are shared in Table 4.6 and Table 4.7. When

the results obtained with single combinations are examined, it is seen that the most

successful results are obtained with ACS, as in Malgenome. After ACS, it was seen

that MP, I, and CS gave the most successful results, respectively. The highest accuracy

of 0.981 with ACS was achieved using the MLP classifier. The worst results in single

combinations were obtained with CS. The highest accuracy revealed by CS was found

to be 0.676.

When the binary combinations were examined, the highest results were obtained

with ACS+MP with 0.989. When the binary combinations containing CS are discussed,

as in Malgenome, it is seen that its contribution to classification performance can be

similar or even higher than I, which has more features than itself. When ACS+I

and ACS+CS were examined, it was seen that these binary combinations produced

identical results. With this evaluation, it increases the preferability of CS with few

features. Similar inferences are also seen when MP+CS and MP+I pairs are examined.

It was observed that the lowest results in binary combinations were obtained with the

50

Table 4.6. Accuracy-based classification results on Drebin dataset

K
N

N

C
4.

5

Li
bS

V
M

N
B

R
F

M
LP

A
da

Bo
os

t

X
G

Bo
os

t

LR LD
A

ACS 0,970 0,969 0,972 0,744 0,980 0,981 0,952 0,979 0,955 0,944
MP 0,948 0,956 0,952 0,590 0,965 0,961 0,920 0,959 0,931 0,915
I 0,762 0,791 0,791 0,540 0,791 0,791 0,780 0,791 0,781 0,774
CS 0,377 0,676 0,676 0,651 0,676 0,676 0,640 0,676 0,640 0,640
ACS+MP 0,982 0,978 0,982 0,702 0,989 0,989 0,961 0,989 0,973 0,962
ACS+I 0,972 0,973 0,974 0,749 0,982 0,982 0,957 0,981 0,961 0,949
ACS+CS 0,971 0,970 0,974 0,747 0,982 0,982 0,953 0,980 0,955 0,948
MP+I 0,949 0,953 0,953 0,631 0,966 0,964 0,925 0,959 0,938 0,922
MP+CS 0,960 0,958 0,959 0,590 0,971 0,969 0,926 0,965 0,936 0,925
I+CS 0,755 0,809 0,808 0,539 0,810 0,811 0,787 0,809 0,788 0,785
ACS+MP+I 0,979 0,979 0,983 0,715 0,989 0,989 0,964 0,989 0,976 0,963
ACS+MP+CS 0,982 0,978 0,983 0,705 0,989 0,989 0,962 0,988 0,974 0,962
ACS+I+CS 0,973 0,973 0,975 0,751 0,982 0,984 0,958 0,981 0,962 0,952
MP+I+CS 0,958 0,960 0,961 0,631 0,971 0,970 0,931 0,964 0,941 0,927
ACS+MP+I+CS 0,982 0,979 0,984 0,715 0,989 0,990 0,964 0,989 0,977 0,964

Table 4.7. F-measure based classification results on Drebin dataset

K
N

N

C
4.

5

Li
bS

V
M

N
B

R
F

M
LP

A
da

Bo
os

t

X
G

Bo
os

t

LR LD
A

ACS 0,968 0,967 0,970 0,744 0,979 0,979 0,948 0,977 0,951 0,939
MP 0,944 0,952 0,947 0,581 0,962 0,958 0,913 0,956 0,926 0,907
I 0,739 0,768 0,769 0,525 0,769 0,768 0,757 0,768 0,758 0,752
CS 0,284 0,666 0,666 0,520 0,666 0,651 0,628 0,666 0,629 0,629
ACS+MP 0,980 0,976 0,980 0,702 0,988 0,988 0,958 0,988 0,971 0,959
ACS+I 0,970 0,971 0,972 0,749 0,981 0,980 0,954 0,980 0,958 0,945
ACS+CS 0,969 0,968 0,972 0,746 0,980 0,980 0,950 0,978 0,951 0,943
MP+I 0,945 0,949 0,949 0,628 0,963 0,961 0,919 0,956 0,933 0,915
MP+CS 0,957 0,955 0,956 0,581 0,968 0,966 0,919 0,962 0,931 0,918
I+CS 0,738 0,788 0,787 0,523 0,789 0,789 0,764 0,787 0,765 0,762
ACS+MP+I 0,978 0,977 0,981 0,715 0,988 0,988 0,961 0,988 0,974 0,960
ACS+MP+CS 0,981 0,976 0,982 0,705 0,988 0,988 0,959 0,987 0,972 0,959
ACS+I+CS 0,971 0,971 0,973 0,751 0,981 0,982 0,955 0,980 0,959 0,948
MP+I+CS 0,955 0,958 0,958 0,628 0,969 0,967 0,925 0,961 0,936 0,920
ACS+MP+I+CS 0,980 0,977 0,982 0,715 0,988 0,989 0,962 0,988 0,976 0,962

I+CS pair, which also has the lowest total number of features.

When the triple and quadruple combinations are examined, it is seen that the most

successful result is 0.990, which is obtained when all feature sets are together. With

the triple combinations ACS+MP+I and ACS+MP+CS, very close results are obtained

with 0.989. When all classifiers are evaluated, the most successful results are obtained

with RF, MLP, and XGBoost. The lowest results are obtained with NB. When Figure

4.3 is examined, it is seen that all classifiers show similar tendencies. As for the changes

51

Figure 4.3. Graphical representation of classification results on Drebin dataset

between feature set combinations, they appear to be parallel to the changes observed in

the Malgenome dataset (Figure 4.2).

Similar to the results presented in Table 4.5, we conducted experiments on the

Drebin dataset using Weka (Witten & Frank, 2002) to investigate how different tools

impact the classification performance. For this purpose, we re-implemented the ACS

features and the RF classifier scenario using Weka. We found that the results obtained

from the Drebin dataset using Weka were closely aligned with those obtained with

Python. Detailed classification results are given in Table 4.8.

Table 4.8. Classification results using RF classifier with ACS features on Drebin dataset

TP Rate FP Rate Precision Recall F-Mesure Class
0,960 0,008 0,986 0,960 0,973 Malware
0,992 0,040 0,977 0,992 0,984 Benign

Average 0,980 0,028 0,980 0,980 0,980

4.4.3 CNN Results

Since the images to be trained are small, the CNN model used in the training

stages should not be too deep or complex. For this reason, a network of two convolution

layers was created to generalize the model without overfitting. Model details are given

in Figure 4.4. The training and testing processes of the network were carried out

according to each combination in Table 4.2, and the results were shared in Table 4.9

and Table 4.10.

52

Figure 4.4. Used CNN model

Training and testing processes were carried out in the experiments performed

with Malgenome and Drebin datasets and reported. The validation split in the training

was determined as 0.2. To better observe the generalization performance of the

models, the other dataset was used to test the trained dataset. For example, in the

experiments conducted for ACS MP CS in the Drebin dataset, the model was tested

with the ACS MP CS in the Malgenome dataset at the end of the training phase. A

similar situation is applied for all combinations, and Tables 4.9 and 4.10 are shared as

test f1 scores.

Dropout was used to prevent memorization in the training of models. In addition,

53

Table 4.9. Classification results of Drebin dataset on CNN

Name R
un

tim
e

Be
st

Ep
oc

h

Be
st

Va
lL

os
s

Ep
oc

h

A
cc

ur
ac

y

Lo
ss

Va
lA

cc
ur

ac
y

Va
lL

os
s

F1
-s

co
re

Te
st

F1

ACS ACS ACS 152 25 0,103 30 0,967 0,099 0,963 0,105 0,967 0,983
MP MP MP 340 32 0,178 37 0,927 0,188 0,928 0,179 0,927 0,876
ACS MP 197 30 0,064 35 0,976 0,070 0,978 0,068 0,976 0,984
ACS I 188 25 0,093 30 0,969 0,089 0,967 0,096 0,969 0,955
ACS CS 136 18 0,094 23 0,964 0,104 0,969 0,098 0,964 0,987
MP I 133 16 0,167 21 0,931 0,182 0,941 0,169 0,931 0,834
MP CS 137 22 0,154 27 0,936 0,156 0,935 0,155 0,936 0,954
ACS MP I 176 28 0,060 33 0,979 0,064 0,980 0,066 0,979 0,940
ACS MP CS 184 29 0,057 34 0,981 0,058 0,979 0,064 0,981 0,986
ACS I CS 218 39 0,073 44 0,976 0,068 0,976 0,077 0,976 0,972
MP I CS 169 31 0,142 36 0,946 0,131 0,945 0,143 0,946 0,902
ACS MP I+CS 149 26 0,061 31 0,980 0,058 0,980 0,067 0,980 0,963

Table 4.10. Classification results of Malgenome dataset on CNN

Name R
un

tim
e

Be
st

Ep
oc

h

Be
st

Va
lL

os
s

Ep
oc

h

A
cc

ur
ac

y

Lo
ss

Va
lA

cc
ur

ac
y

Va
lL

os
s

F1
-s

co
re

Te
st

F1

ACS ACS ACS 55 25 0,069 30 0,986 0,052 0,976 0,074 0,986 0,868
MP MP MP 65 28 0,130 33 0,938 0,171 0,946 0,147 0,938 0,858
ACS MP 52 19 0,056 24 0,982 0,054 0,981 0,058 0,983 0,880
ACS I 55 25 0,054 30 0,981 0,050 0,982 0,058 0,981 0,825
ACS CS 36 7 0,069 12 0,974 0,081 0,973 0,073 0,975 0,847
MP I 46 13 0,111 18 0,957 0,130 0,962 0,112 0,958 0,708
MP CS 44 13 0,099 18 0,961 0,115 0,966 0,103 0,962 0,879
ACS MP I 37 7 0,057 12 0,975 0,071 0,982 0,061 0,975 0,889
ACS MP CS 58 27 0,039 32 0,991 0,028 0,988 0,044 0,991 0,880
ACS I CS 44 11 0,042 16 0,976 0,064 0,982 0,052 0,976 0,797
MP I CS 39 8 0,066 13 0,965 0,105 0,978 0,074 0,966 0,787
ACS MP I+CS 49 18 0,040 23 0,987 0,039 0,986 0,043 0,987 0,882

early stopping was applied to the models during the training, and the training was

terminated if the validation loss value could not improve by five epochs.

When the results for the drebin data set in Table 4.9 are examined, it is seen that

the best outcome is 0.981 F-Measure obtained with ACS MP CS. It is seen that the

same trio received a test F-measure value of 0.986. When all models are examined, it

is seen that the lowest accuracy value obtained is 0.927. It has also been observed that

combinations containing ACS generally give better results in CNN networks.

54

Figure 4.5. Accuracy results for feature set combinations on Drebin dataset

Figure 4.6. Loss results for feature set combinations on Drebin dataset

Figure 4.7. Val accuracy results for feature set combinations on Drebin dataset

The observed scores for Malgenome are similar to those of Drebin. However, in

this scenario, the training set is much smaller than the test set since the Malgenome

datasets are used in the training and the Drebin datasets in the test. Therefore, this

scenario is more challenging than the other scenario. In the training made in this

scenario, it is seen that the model achieves the best results with ACS MP CS. The

55

Figure 4.8. Val loss results for feature set combinations on Drebin dataset

Figure 4.9. Accuracy results for feature set combinations on Malgenome dataset

Figure 4.10. Loss results for feature set combinations on Malgenome dataset

model achieved an F-score of 0.991. When the test results are examined, the highest

performance is 0.889, obtained with ACS MP I. However, many combinations seem

to produce outcomes of around 0.88.

Accuracy, loss, validation accuracy, and validation loss graphs that emerged with

the training of the models are shared in Figures 4.5, 4.6, 4.7, 4.8, 4.9, 4.10, 4.11 and

56

4.12.

Figure 4.11. Val accuracy results for feature set combinations on Malgenome dataset

Figure 4.12. Val loss results for feature set combinations on Malgenome dataset

4.4.4 Comparison with previous studies

In this subsection, the results of the studies in the literature will be compared

with the results obtained from this study. When the studies in Table 4.12 are examined,

researchers perform malware detection using different static feature groups. However,

no comparison was generally made with other static feature sets in the selection of the

used features. Feature set selections are generally used according to similar studies or

considering the relevant feature set to be important. Especially permissions and APIs

are frequently preferred by researchers. However, permissions or APIs alone may not

provide sufficient classification performance. Better results can be achieved if feature

groups such as CS are added to these features. One of the important findings of this

57

research is the answer to the question of how the classification algorithms perform when

used together. With this research, researchers working in static analysis can use more

conscious features. For example, in (Giannakas, Kouliaridis, & Kambourakis, 2023),

permissions and Intents are used as features. If API calls were preferred instead of

Intent, the classification performance would have been higher. Similarly, permissions

and Java source codes were evaluated with machine learning techniques in (Milosevic,

Dehghantanha, & Choo, 2017). API calls would have been preferable over Java source

codes.

Table 4.11. List of studies for comparison

Paper Year ID
(Nissim, Moskovitch, BarAd, Rokach, & Elovici, 2016) 2016 a
(Milosevic et al., 2017) 2017 b
(Tiwari & Shukla, 2018) 2018 c
(H.-J. Zhu et al., 2018) 2018 d
(A. K. Singh, Jaidhar, & Kumara, 2019) 2019 e
(Rathore, Sahay, Nikam, & Sewak, 2021) 2020 f
(Mohamad Arif et al., 2021) 2021 g
(Yilmaz et al., 2022) 2022 h
(Memon et al., 2023) 2023 i
(Giannakas et al., 2023) 2023 j
(Yao, Li, Shi, Liu, & Du, 2023) 2023 k
(Keyvanpour, Barani Shirzad, & Heydarian, 2023) 2023 l

According to the results obtained from this study, the highest performance

achieved with traditional machine learning on the Drebin dataset is 99%. This result is

obtained by using all static feature groups. However, classification performance is

0.01-0.02 less than this result in results obtained from triple combinations with API.

A similar situation is observed in the results obtained from the Malgenome dataset.

The highest performance obtained from the Malgenome dataset is obtained from the

XGBoost algorithm. This result is obtained with the triple combination. When part of

the Drebin dataset is used as training and part as a test, the success rate is 98.1%. On

the other hand, when a part of the Malgenome dataset is used for training and some

for testing, the success rate is 99.1%. It is seen that the CNN model is quite efficient

on RGB images created from static features. When the results obtained from other

CNN experiments are evaluated, when the Malgenome dataset is used as training, and

58

Drebin is tested, a success rate of 88.9% is observed. In the opposite scenario, 98.7%

success occurs. It is noteworthy that the highly successful classification of unknown

samples using the RGB image-based approach.

Table 4.12. Comparisons with previous studies

ID Dataset Feature Best Alg. Results(%) Metric

a 10000 M
30000 B

Permission,
Classes.dex file SVM 98.8 Accuracy

b 200 M
200 B Permission, Java files AdaBoostM1 95.6 F1 score

c 669 M
652 B Permission, API LR 97.25 Accuracy

d 1065 M
1065 B

Permission, API,
System events, URL Rotation forest 88.26 Accuracy

e 5600 M
8000 B Permission, API SVM 99.6 Accuracy

f 5569 M
5721 B Permission RF 93.81 Accuracy

g 5000 M
5000 B Permission RF 91.59 Accuracy

h 2854 M
2870 B Permission NB 92.4 Accuracy

i 27166 M
27166 B Permission, API NB 93.26 Accuracy

j 1000 M
1000 B Permission, Intent XGBoost 84 F1 score

k 1000 M
1000 B

Permission, Intent,
API, Opcode seq. RF 97.6 Accuracy

l 5560 M
123453B

Hardware comp., API,
Permission, Intent RF 93.9 Accuracy

Ours 5560 M
9476

API, Permissions,
Command signature MLP 99 Accuracy

Ours 5560 M
9476 RGB images CNN 98.1 Accuracy

Ours 1260 M
2539

API, Permissions,
Command signature XGBoost 99.3 Accuracy

Ours 1260 M
2539 RGB images CNN 99.1 Accuracy

M: The number of malicious sample, B: The number of benign sample

59

5 APK2AUDIO4ANDMAL: AUDIO BASED MALWARE
FAMILY DETECTION FRAMEWORK

This chapter proposes an approach to audio-based Android malware family

detection. The processes of converting Android application files into audio format and

subsequent extraction of audio-based features will be elaborated. Then, effective

features in audio-based malware family detection will be determined by applying

different feature selection methods.

5.1 Motivation

In recent years, Android malware detection and classification of Android malware

according to their families is one of the important issues. Due to the importance of

this issue, many new systems have been proposed and will continue to be proposed in

recent years. Despite all these developments, some malware and families can easily

bypass these detection systems (Kouliaridis, Barmpatsalou, Kambourakis, & Chen,

2020). Therefore, the need for up-to-date and different detection systems is increasing

day by day. Especially considering systems based on static analysis, these systems are

mostly vulnerable to zero-day attacks (Yan & Yan, 2018). Therefore, in addition to

approaches such as static analysis, malware detection systems based on image and audio

processing have been suggested by researchers in recent years (Bijitha & Nath, 2021).

In this study, a framework called Apk2Audio4AndMal based on audio processing is

proposed. With this framework, APK files can be considered as a more effective system

against zero-day attacks, as a different representation system has emerged by converting

to audio files. Because vectors with similar properties can often be seen in a static

analysis or signature-based systems. However, since the structure will be completely

different in audio files, the representation of each malware family or malware may also

change. In addition to such advantages, there is no similar study that performs feature

selection in audio-based Android malware family classification (Alswaina & Elleithy,

2020). To the best of our knowledge, this will be the first study to examine feature

selection and its effects on classification performance in audio-based Android malware

family classification.

5.2 Contribution

The main contributions of the study are as follows:

• Android applications were transformed into .wav format audio files and represented

using audio-based features. Three features were added to the features used in addition

to similar studies.

• Four distinct feature selection methods were employed to examine the impact of

feature selection methods in audio-based Android malware family detection.

• Audio-based features were examined, and the features with high and low

discrimination in Android malware family detection were determined.

5.3 Proposed Method

This section explains the proposed method for malware family detection and the

steps followed to create this method. The stages of the proposed method are shown in

Figure 5.1.

Figure 5.1. Audio features based android malware family detection workflow

The raw dataset comprises apk files for malware family detection and requires

preparation before the classification stages. To prepare the data, a series of operations

were executed for each Android malware sample in the dataset. Initially, the .dex files

included in the apk files were exported. Then, the .dex files were read in binary format,

and each bit in the data array was replaced with the corresponding signal pattern.

Finally, the data was saved in .wav format by appending the appropriate file headers.

The flow of converting the .dex file to a .wav format audio file is illustrated in Algorithm

3.

Since the dataset samples are represented as an audio file, they were now ready

61

to extract audio-based features. Audio-based features were extracted from each sample

and saved in a CSV file. The following features were extracted from the audio samples.

• Chromagram is a representation of 12 pitch classes that captures the harmonic and

melodic characteristics of sound (Bartsch & Wakefield, 2005; Shah, Kattel, Nepal,

& Shrestha, 2019).

• RMS, which stands for root mean square, is a tool that measures the loudness of a

sound sample within a window. The resulting value is an average of the total power

of the audio sample.

• Spectral centroid indicates the center of mass of the spectrum. It is calculated by the

weighted average of the frequencies present in the signal.

• Spectral bandwidth, bandwidth is the difference between the highest and lowest values

of frequencies in a sound sample.

• Spectral rolloff is the frequency below which a specified percentage of the total

spectral energy

• Zero crossing rate is a measure of how often the signal crosses zero per unit of

time. Speech discrimination is frequently used in audio applications such as music

genre recognition. It is one of the simplest audio-based features (Giannakopoulos &

Pikrakis, 2014).

• Spectral contrast is calculated by averaging the decibel difference between peaks and

valleys in each frame in the spectrum. High contrast values indicate clear sound

signals, while low contrast values indicate noisy sound signals (Jiang, Lu, Zhang,

Tao, & Cai, 2002).

• Flatness refers to how uniformly the frequencies in a spectrum are distributed. In

other words, it shows how noisy the sound sample is. Flatness takes a value in the

range of 0-1, and as it gets closer to 1, the sound becomes like white noise (Dubnov,

2004).

• Mel spectrogram is the spectrogram in which the frequencies are converted to the

mel scale. It represents the sound as a single channel image as it contains time and

frequency information at the same time.

• Poly returns the coefficients necessary to fit an nth-order polynomial into the columns

of the spectrogram at each frame.

• Tonnetz (tonal network) is a graphical representation of tonal centroid features. It is

a useful tool for understanding the harmonic structure of tonal audio.

62

• MFCC are coefficients that represent sound similar to human perception. It is

extensively used in speech and speaker recognition applications.

Algorithm 3 Apk to audio conversion
Input: 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛1, . . . , 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑁
Output: .𝑤𝑎𝑣 files

1: Function 𝐶𝑜𝑛𝑣𝑒𝑟𝑡2𝐴𝑢𝑑𝑖𝑜(𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛1, . . . , 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑁)
2: for 𝑖 = 1 to 𝑁 do
3: export .dex file from apk file for 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛[𝑖]
4: read .dex file as binary for 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛[𝑖]
5: add .wav file headers to data
6: create .wav output file
7: replace each bit in the data array with the corresponding signal pattern
8: set .wav parameters (on the 7th, 8th, and 9th lines, the parameter of the .wav

file is set)
9: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠← 1

10: 𝑠𝑎𝑚𝑝𝑙𝑒 𝑤𝑖𝑑𝑡ℎ← 1
11: 𝑓 𝑟𝑎𝑚𝑒 𝑟𝑎𝑡𝑒 ← 32768
12: write data to file
13: close file
14: end for
15: return .𝑤𝑎𝑣 files
16: end Function

The feature vector was extracted for each file and saved with the label indicating

the malware family. After the feature extraction, a 4000× 32 data matrix was obtained.

In the resultant CSV file, each row represents a sample from the dataset, and each column

represents an attribute extracted from the samples. At this stage, the CSV file can be

used to train machine-learning algorithms for malware family detection. However, it is

essential to ascertain whether all the extracted features effectively distinguish between

malware families. Consequently, feature selection was performed on the acquired CSV

file using CFS-Subset, Information Gain, Gain Ratio, and ReliefF algorithms. After

the selections were made, the data were reduced according to the selected features,

and reduced data sets were obtained. Details of the feature selection methods used

are given in Section 5.3.1. In order to perform family classification, it is necessary

to create a model using classification algorithms with the data gathered in CSV files.

For this process, classification experiments were performed with KNN, SVM, Logistic,

Random Forest, and C4.5 algorithms.

63

5.3.1 Feature Selection

Suppose 𝐹𝑆 is a set showing all attributes of a dataset. Finding the best subset

that can be selected from this set is called feature selection. The goodness of the

selected subset is the situation in which the selection is made in a way that does not

adversely affect the classification performance. There are many advantages to using

feature selection methods. These can be considered as reducing the computational

cost, eliminating the excessive memorization problem, and running machine learning

techniques efficiently. Feature selection methods are generally evaluated under 3 groups

(Chandrashekar & Sahin, 2014). These are filter-based feature selection methods,

wrapper feature selection methods, and embedded feature selection methods. The

feature selection methods used in this study are discussed in detail in the subsections.

5.3.1.1 Information Gain (IG)

An attribute’s ”information gain” (IG) indicates how much data it provides

about a given class. The information gain metric employs entropy from the theory of

information. In practice, it is calculated based on the difference in entropy before and

after the data is separated by an attribute. Equation 5.1 provides a purely mathematical

formulation of the IG metric. For feature 𝑓 , the IG score is found using Equation 5.1.

𝐼𝐺 (𝑓 , 𝐷) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷) − ©«
𝑛∑︁
𝑗=1

|𝐷 𝑗 |
|𝐷 | ∗ 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷 𝑗)

ª®¬ (5.1)

In Equation 1, 𝐷 represents the used dataset, 𝑓 represents the evaluated feature, and

|𝐷 𝑗 | represents the number of times the 𝑗 value passes in 𝑓 .

5.3.1.2 Gain Ratio (GR)

The IG method becomes biased when the number of distinct values a feature

has is large. This is because the number of branches after division is high, and the

number of samples under each branch is low. This raises problems such as overfitting.

To prevent this situation, the Gain Ratio algorithm normalizes the Information Gain

algorithm with SplitInfo and detects features with high representation ability. The Gain

Ratio algorithm is shown in Equation 5.2.

64

𝐺𝑎𝑖𝑛 − 𝑅𝑎𝑡𝑖𝑜 =
𝐼𝐺 (𝑓 , 𝐷)
𝑆𝑝𝑙𝑖𝑡 𝐼𝑛 𝑓 𝑜

(5.2)

5.3.1.3 CFS Subset (CSF)

Correlation-Based Feature Selection (CFS Subset) (Hall, 1999) is a feature

selection algorithm that aims to select the best feature set by calculating the

correlation between features. The algorithm aims to select a subset from the feature

set that has high representativeness (low correlation between them) and high

correlation with the class label. The correlation between features is calculated

according to Equation 5.3.

𝐶𝑜𝑟 (𝑋,𝑌) = (𝑁 ∗
∑(𝑋𝑖 ∗ 𝑌𝑖) − (∑ 𝑋𝑖) ∗ (

∑
𝑌𝑖))

𝑠𝑡𝑑 (𝑋) ∗ 𝑠𝑡𝑑 (𝑌)) (5.3)

The numerator part of the formula expresses the covariance between 𝑋 and 𝑌

features, and the denominator part expresses the product of the standard deviations of

the 𝑋 and 𝑌 attributes.

5.3.1.4 ReliefF (RFF)

Relief is a filter-based feature selection algorithm proposed by Kira and Rendell in

1992 (Kira & Rendell, 1992). Although it was a simple and effective method, it could

only deal with two-class problems. After developing several intermediate versions,

Kononenko 1994 proposed the ReliefF algorithm (Kononenko, 1994), the sixth version

of the Relief algorithm (A, B, .., F), which can be applied to multi-class problems.

While the ReliefF algorithm works on a multi-class dataset, R samples are selected

from the dataset in each m iteration. Then, k Nearest Hits from the same class, and k

Nearest Misses for each different class are found for the selected sample. The weights

of the attributes are updated according to the values found. As a result of iterations, the

updated weights in each round take the result values. The higher the resulting weight

values, the more valuable the features are considered for classification.

65

5.4 Experimental Settings

We performed our experiments on a balanced 8-class dataset obtained from

different datasets. We created a homogeneous dataset consisting of 4000 data in total

by choosing eight classes with more than 500 samples from AMD (Wei et al., 2017)

and Drebin (Arp et al., 2014) datasets. The malware families used in the experiments

and which datasets they were taken from are shown in Table 5.1.

Table 5.1. Used dataset

Family Count Origin Dataset

Bankbot 500 AMD
DroidKubgFu 500 AMD
FakeInst 500 AMD
Fusob 500 AMD
Jisut 500 AMD
Mecor 500 AMD
Opfake 500 Drebin
Plankton 500 Drebin

5.5 Experimental Results

The results obtained by applying four different feature selection methods to the

dataset are presented in Table 5.2. When the table is examined, it is seen that six

features are selected with the CFS-Subset method, 15 features are selected with the

Gain Ratio method, 15 features are selected with the Information Gain method, and 16

features are selected with the ReliefF method on total 31 features. It has been observed

that all methods select five common features (chroma-stft, rmse, poly, mel spectrogram,

mfcc1), and three or more methods select eleven common features. In the experiments,

it was observed that all methods selected the Mel spectrogram we added to the feature

set, and all three methods except CFS-Subset selected the flatness and contrast. The

high selection rate of the added features indicates that their discrimination on the dataset

is high.

When the low number of selected features is evaluated, it is seen that zero crossing

rate, mfcc6, mfcc8, mfcc11, mfcc12, mfcc13, mfcc15, mfcc16, mfcc19 features are

66

Table 5.2. Selected features by feature selection algorithms

ReliefF(16) Gain-Ratio(15) CFS-Subset(6) Infogain(15)

chroma stft x x x x
rms x x x x

spectral centroid x x
spectral bandwidth x

rolloff x x
zero crossing rate

contrast x x x
flatness x x x

mel spectrogram x x x x
poly0 x x x x

tonnetz x
mfcc1 x x x x
mfcc2 x
mfcc3 x x x
mfcc4 x x x
mfcc5 x
mfcc6
mfcc7 x x
mfcc8
mfcc9 x
mfcc10 x x x
mfcc11
mfcc12
mfcc13
mfcc14 x
mfcc15
mfcc16
mfcc17 x
mfcc18 x x x
mfcc19
mfcc20 x

not selected by any algorithm. Tonnetz, mfcc5, mfcc14, and mfcc20 attributes are

selected only by the ReliefF algorithm. The feature distributions by families for zero

crossing rate, mfcc8, mfcc12, and mfcc19 are given in Figures 5.2, 5.3, 5.4, and 5.5,

respectively.

When we examine Figure 5.2, it is seen that the zero crossing rate takes values

in the same range for almost all classes. Similarly, when we examine Figure 5.3, it is

seen that DroidKongFu in mfcc8 has spread over an area covering four families. When

67

5.4 and 5.5 are examined, it is seen that the discrimination of these features according

to classes is low.

Figure 5.2. Zero crossing rate feature distribution by families - box plot

Figure 5.3. Mfcc8 feature distribution by families - box plot

When we examine the features with high discrimination, it is seen that the jisut

family is differentiated from all classes in the contrast shown in Figure 5.6. It is seen that

the distribution of Bankbot only coincides with DroidKungFu. Similarly, when flatness

in Figure 5.7 is examined, it can be seen that Opfake, Jisut, Fusob, and FakeInst families

differ from Plankton, Mecor, DroidKungFu and BankBot. Although the mean flatness

values for all families are between 0.00042 and 0.00050, families such as Opfake are

68

Figure 5.4. Mfcc12 feature distribution by families - box plot

Figure 5.5. Mfcc19 feature distribution by families - box plot

in lower values.

In the feature groups selected by all methods, it is seen that the distribution for

the mel spectrogram divides the families into four groups (Figure 5.8). The Jisut family

is in the lowest mel spectrogram range, followed by the Opfake, Fusob, and FakeInst

families. The Mecor family has a distribution between 40-41. Its specimens were

differentiated from other families because of the range it was found. In the Bankbot,

DroidKungFu, and Plankton families, the mel spectrogram distribution is above 41.

Poly in Figure 5.9 appears to form a mel spectrogram-like family distribution.

In family classification experiments, it was preferred to use Weka (Witten &

69

Figure 5.6. Contrast feature distribution by families - box plot

Figure 5.7. Flatness feature distribution by families - box plot

Frank, 2002), which has many classifiers ready. Classification results were obtained for

each data set reduced by feature selection algorithms with KNN, Random Forest, C4.5,

Logistic, and SMO algorithms. To better understand the generalizability of the models

created with the classifiers, 10-fold cross-validation was applied to all classifiers. The

results obtained with the classifiers according to the feature selection methods are

shown in Table 5.3.

The results obtained with KNN and Random Forest are generally very close.

The highest performance in all experiments was obtained using the ReliefF feature

selection method and KNN classifier with 0.966 F-measure. The lowest-performing

70

Figure 5.8. Mel spectrogram feature distribution by families - box plot

Figure 5.9. Poly feature distribution by families - box plot

Table 5.3. Classification results by feature selection algorithms and classifiers

CFS-Subset Gain-Ratio Infogain ReliefF All
Random Forest 0.952 0.961 0.961 0.962 0.961

KNN 0.94 0.961 0.961 0.966 0.962
Logistic 0.671 0.823 0.834 0.832 0.89

C4.5 0.912 0.931 0.931 0.936 0.934
SMO 0.601 0.707 0.708 0.768 0.783

classifier for all feature selection methods is SMO. SMO had the highest success with

0.783 F-measure on the non-reduced dataset. However, even this value is relatively

low compared to other classifiers. In classification experiments with data reduced by

CFS-Subset, the best result was obtained with RF classifier with a score of 0.952. The

71

Table 5.4. Performance metrics using ReliefF and KNN

TPR FPR Precision Recall F-Measure MCC ROC Area
BankBot 0.988 0.007 0.950 0.988 0.969 0.964 0.995
DroidKugFu 0.910 0.010 0.930 0.910 0.920 0,909 0,976
FakeInst 0.994 0.002 0.986 0.994 0.990 0.989 0.996
Fusob 0.998 0.001 0.994 0.998 0.996 0.995 0.999
Jisut 0.970 0.003 0.976 0.970 0.973 0.969 0.991
Mecor 0.998 0.002 0.984 0.998 0.991 0.990 0.998
Opfake 0.974 0.002 0.984 0.974 0.979 0.976 0.992
Plankton 0.898 0.011 0.924 0.898 0.911 0.898 0.970
Average 0.966 0.005 0.966 0.966 0.966 0.961 0.990

lowest results were obtained with SMO and Logistic, respectively. Although

classification was made using only six features, quite acceptable classification

performances were obtained with RF and KNN. The results obtained in classification

experiments with data reduced by Gain-Ratio and Information gain are very close.

Among both feature selection methods, the best classification results with 0.961 were

obtained with KNN and Random Forest algorithms. Experiments with data reduced

by ReliefF generally gave high results for all classifiers. RF, KNN, and C4.5

algorithms achieved higher results with the features selected with ReliefF compared to

the classifications made using the whole data set.

The confusion matrix for the results obtained using ReliefF and KNN is shown

in Figure 5.10. In Table 5.4, the performance metrics of the same configuration are

shown.

When Table 5.4 is examined, it is seen that the Fusob and Mecor families have

the best classification results and the lowest error rate, with one misclassification each.

Only one sample of Fusob is classified as FakeInst. Similarly, a sample from the Mecor

family is classified as BankBot. However, since the number of other classes classified

as Fusob is less than those classified as Mecor, the precision of Fusob is higher than

Mecor. One instance of FakeInst and two instances of Opfake from other families are

classified as Fusob.

Table 5.5 compares Android malware family classification studies and the results

obtained from this study. The survey on Android malware family detection did not

consider an audio-based approach (Alswaina & Elleithy, 2020). As far as we examined,

only two studies were found (Mercaldo & Santone, 2021; Casolare et al., 2021). When

72

Figure 5.10. Confusion matrix of family classification results using ReliefF feature selection
algorithm and KNN classifier

the results of both studies were examined, it was observed that the audio-based methods

gave good results in malware family detection. Likewise, the results obtained from

this study are remarkable. In addition, to the best of our knowledge, there has been no

previous study that makes feature reduction in audio-based Android malware detection.

When the result of this study is compared with other studies, it was seen that

good results were obtained with very few features. For example, while 3712 features

were used in the study (Y. Zhang, Feng, Huang, Ye, & Weng, 2020), close results were

obtained with only 16 features in this study. Also, an utterly balanced dataset using

only six features with the CFS Subset method yielded more than 95% performance in

this study. In the studies of the classification of Android malware according to their

families, it has been seen that primarily unbalanced datasets are used, whereas a metric

such as accuracy, which may be a problem in comparison, is preferred instead of a

metric such as F-measure. In this study, a completely balanced and up-to-date dataset

is handled, and results are given with the F-measure, which is fair to compare.

73

Ta
bl

e
5.

5.
C

om
pa

ris
on

of
pr

ev
io

us
w

or
ks

Re
fe

re
nc

es
Ye

ar
Ty

pe
M

D
FC

N
C

N
F

Pr
ec

is
io

n
Re

ca
ll

Re
su

lt
(M

er
ca

ld
o

&
Sa

nt
on

e,
20

21
)

20
21

A
ud

io
Ye

s
Ye

s
71

28
0.

91
1

0.
91

3
0.

92
2

A
cc

(C
as

ol
ar

e
et

al
.,

20
21

)
20

21
A

ud
io

N
o

Ye
s

10
29

0.
90

7
0.

90
7

0.
98

8
A

cc
0.

90
7

F-
M

ea
su

re

(Y
.Z

ha
ng

et
al

.,
20

20
)

20
20

M
an

ife
st

Fe
at

ur
es

N
o

Ye
s

10
37

12
-

-
0.

98
3

F-
M

ea
su

re

(F
an

g
et

al
.,

20
20

)
20

20
Im

ag
e

Te
xt

Te
xt

ur
e

N
o

Ye
s

15
64

+
0.

96
0

0.
96

0
0.

96
0

F-
M

ea
su

re

(Z
hi

w
u,

Re
n,

&
So

ng
,2

01
9)

20
19

C
FG

an
d

D
FG

V
irt

ua
liz

at
io

n
N

o
Ye

s
20

31
3+

-
-

0.
94

7
A

cc

(A
ls

w
ai

na
&

El
le

ith
y,

20
18

)
20

18
Pe

rm
is

si
on

s
N

o
Ye

s
28

42
-

-
0.

95
9

A
cc

(C
av

li
&

Se
n,

20
20

)
20

20
H

yb
rid

Fe
at

ur
es

N
o

Ye
s

21
32

9
-

-
0.

98
04

A
cc

O
ur

20
23

A
ud

io
N

o
Ye

s
8

16
0.

96
6

0.
96

6
0.

96
6

F-
M

ea
su

re
M

D
:M

al
w

ar
e

D
et

ec
tio

n,
FC

:F
am

ily
C

la
ss

ifi
ca

tio
n,

N
C

:N
um

be
ro

fC
la

ss
,N

F:
N

um
be

ro
fF

ea
tu

re
s,

A
cc

:
A

cc
ur

ac
y

74

Following the Android malware family classification experiments, we conducted

further tests to evaluate the impact of the selected features on malware detection.

To assemble the dataset for experiments, we included 4038 benign samples from the

CICMalDroid2020 dataset (Mahdavifar et al., 2022), along with the 4000 malicious

samples previously used in the family detection phase. Experiments were conducted

employing the selected features during the family classification stage. The results from

these classification experiments are presented in Table 5.6.

Table 5.6. Binary classification results by feature selection algorithms and classifiers

CFS-Subset Gain-Ratio Infogain ReliefF All
Random Forest 0.953 0.958 0.959 0.960 0.961

KNN 0.942 0.956 0.957 0.955 0.956
Logistic 0.921 0.930 0.930 0.928 0.943

C4.5 0.939 0.944 0.943 0.947 0.943
SMO 0.904 0.914 0.912 0.914 0.919

Upon examination of the results, it is observed that the highest results across all

feature sets are achieved with RF. The peak performance in binary classification is an

F-measure of 0.961, accomplished using all features. However, it should also be noted

that when the selected features were used, results quite close to this value were also

obtained. In the experiments where the RF classifier was used with the features selected

by CFS Subset, Gain Ratio, Information Gain, and ReliefF, F-measure values of 0.953,

0.958, 0.959, and 0.960 were obtained, respectively. Considering the complexity and

resource consumption brought by high dimensionality, the results obtained with the

selected features are considered quite successful. In the evaluation of the classifiers,

each demonstrates a performance exceeding a 0.900 F-measure. Notably, SMO and

Logistic, which underperformed in family classification, show higher results in binary

classification scenarios.

Detailed results for the RFF feature selection and RF classifier pair, which yielded

Table 5.7. Binary classification results using ReliefF feature selection algorithm and RF
classifier

TPR FPR Precision Recall F-Measure MCC ROC Area
Malware 0.970 0.050 0.951 0.970 0.960 0.920 0.993
Benign 0.950 0.030 0.969 0.950 0.960 0,920 0,993
Average 0.960 0.040 0.960 0.960 0.960 0.920 0.993

75

Figure 5.11. Confusion matrix of binary classification results using ReliefF feature selection
algorithm and RF classifier

the highest performance in feature-selected results, are presented in Table 5.7 and Figure

5.11. Examination reveals precision values of 0.951 for the malware class and 0.969

for the benign class. These results demonstrate the audio-based approach’s ability to

perform highly in malware and family detection. Evaluating the obtained results, it

becomes clear that the audio-based features can effectively represent the data with a

limited number of features.

76

6 CONCLUSIONS

Android malware detection and family classification are among the widespread

problems today. Although studies on permission-based approaches have brought

detection approaches to a certain point, new approaches are needed against the

developing malware threat every day. In this thesis, we conducted extensive research

on Android malware detection and family detection, presenting a comprehensive

account of the methodologies employed and the results obtained. Firstly, preliminary

studies on permission-based Android malware detection are given to understand the

Android malware detection process. Chapter 3 shares the studies and observations in

this context. In Section 3.1 and Section 3.2, two studies that were covered within the

scope of preliminary studies are detailed. Permission-based studies in Chapter 3 have

led us to search for attribute sets other than permissions. Section 3.2, on the other

hand, has led us to conclude that apart from classical approaches, image

transformation and deep learning methods such as CNN produce effective results in

malware detection. Observations derived from our preliminary studies have steered

our research towards two directions in Android malware detection: investigating the

impact of feature set combinations on classification performance and exploring the

use of audio-image transformations.

In Chapter 4, we conducted research on the classification performance of various

feature set combinations. The experiments revealed that the contribution of each feature

set to the classification performance varied significantly. Among the four feature sets

tested, it was observed that the API calls yielded the most favorable results. We found

that the Command Signature and Intent Filter groups, which have fewer features, yield

lower classification performances when used independently. Yet, when these feature

groups are combined with ACS and MP, improvement in classification performance

is observed. Notably, despite its lower feature count, the CS group demonstrated a

higher contribution than the Intent group. This point underscores the potential efficacy

of these lesser-used attribute sets when combined with others. Upon analyzing the

classifiers, it was found that RF, MLP, and XGBoost demonstrated higher classification

performances in both data sets. In the second part of the study, image representations

were generated from combinations of feature sets. A Convolutional Neural Network

(CNN) model, including two convolutional layers, was employed to perform the training

and testing processes. For each combination, the two datasets were cross-referenced,

and their equivalents in the alternate dataset were utilized for testing following the

training phase. The results suggest that our model is capable of achieving acceptable

results even when the size of the training set is significantly smaller than that of the test

set. This study performed extensive experiments with two data sets, four feature sets,

ten classifiers, and a CNN. We believe these findings could serve as a reference point

for researchers utilizing static features in Android malware detection and will guide

them in choosing the optimal feature set - classification method combinations.

In Chapter 5, Android application files were evaluated within the audio domain.

Application files were transformed into .wav audio files to perform Android malware

family detection. Three additional features not included in similar studies were added

to assess their impact on malware family detection. Four different feature selection

methods were applied to determine the high-discriminative from low-discriminative

features in Android malware detection, and the results were compared. The results

indicated that one of the added features was selected by all methods, while at least

three methods chose the remaining two features. This implies that these features

exhibit a high discriminative capacity in Android malware family detection.

Experiments with a dataset of 4000 samples divided into eight classes were conducted

using five different classification algorithms. It was observed that the proposed

method successfully detected malware families with an F-measure of 0.966 using only

about half of the features. Even with only six features, an F-measure of 0.952 was

achieved after feature selection.

Overall, it is essential to emphasize that carefully selecting the correct feature

set(s) and classifier in Android malware detection studies is critical to achieving high

classification performance while minimizing resource consumption. It is, therefore, a

significant conclusion that researchers in this field should consider these factors due to

their effects on time and resource usage. Furthermore, the application of innovative

methods such as audio and image-based approaches have shown to contribute positively

not only to Android malware detection but also to the detection of malware families.

In light of these observations, our future research aims to develop a hybrid method for

78

malware and malware family detection, combining the image-based and audio-based

approaches presented in this study. In addition to employing these two methods in a

cascaded manner, research will also focus on visualizing the tabular data generated by

the audio-based approach.

79

REFERENCES

AAPT2 — Android Studio — Android Developers. (2023). https://developer
.android.com/tools/aapt2. ([Last access date: 12 June 2023])

Allix, K., Bissyandé, T. F., Klein, J., & Le Traon, Y. (2016). Androzoo: Collecting
millions of android apps for the research community. In Proceedings of the
13th international conference on mining software repositories (pp. 468–471).
New York, NY, USA: ACM. Retrieved from http://doi.acm.org/10.1145/
2901739.2903508 doi: 10.1145/2901739.2903508

Almomani, I., Alkhayer, A., & El-Shafai, W. (2022). An automated vision-based deep
learning model for efficient detection of android malware attacks. IEEE Access,
10, 2700–2720.

Alswaina, F., & Elleithy, K. (2018). Android malware permission-based multi-class
classification using extremely randomized trees. IEEE Access, 6, 76217–76227.

Alswaina, F., & Elleithy, K. (2020). Android malware family classification and analysis:
Current status and future directions. Electronics, 9(6), 942.

Alzubaidi, A. (2021). Recent advances in android mobile malware detection: a
systematic literature review. IEEE Access, 9, 146318–146349.

Androguard. (2023). https://github.com/androguard/androguard. ([Last
access date: 12 June 2023])

APKPure Android Application Store. (2023). https://apkpure.com/tr/. ([Last
access date: 30 June 2021])

Apktool. (2023). https://ibotpeaches.github.io/Apktool/. ([Last access date:
12 June 2023])

Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K., & Siemens, C. (2014).
Drebin: Effective and explainable detection of android malware in your pocket.
In Ndss (Vol. 14, pp. 23–26).

Arslan, R. S., & Tasyurek, M. (2022). Amd-cnn: Android malware detection via
feature graph and convolutional neural networks. Concurrency and Computation:
Practice and Experience, 34(23), e7180.

Atacak, İ., Kılıç, K., & Doğru, İ. A. (2022). Android malware detection using
hybrid anfis architecture with low computational cost convolutional layers. PeerJ
Computer Science, 8, e1092.

AV-ATLAS - Malware & PUA. (2023). https://portal.av-atlas.org/malware.
([Last access date: 12 June 2023])

Bakır, H., & Bakır, R. (2023). Droidencoder: Malware detection using auto-encoder
based feature extractor and machine learning algorithms. Computers and
Electrical Engineering, 110, 108804.

Bakour, K., & Ünver, H. M. (2021). Deepvisdroid: android malware detection

80

https://developer.android.com/tools/aapt2
https://developer.android.com/tools/aapt2
http://doi.acm.org/10.1145/2901739.2903508
http://doi.acm.org/10.1145/2901739.2903508
https://github.com/androguard/androguard
https://apkpure.com/tr/
https://ibotpeaches.github.io/Apktool/
https://portal.av-atlas.org/malware

by hybridizing image-based features with deep learning techniques. Neural
Computing and Applications, 33, 11499–11516.

Bartsch, M. A., & Wakefield, G. H. (2005). Audio thumbnailing of popular music
using chroma-based representations. IEEE Transactions on multimedia, 7(1),
96–104.

Bijitha, C., & Nath, H. V. (2021). On the effectiveness of image processing based
malware detection techniques. Cybernetics and Systems, 1–26.

Calik Bayazit, E., Koray Sahingoz, O., & Dogan, B. (2023). Deep learning based
malware detection for android systems: A comparative analysis. Tehnički vjesnik,
30(3), 787–796.

Casolare, R., Iadarola, G., Martinelli, F., Mercaldo, F., & Santone, A. (2021). Mobile
family detection through audio signals classification. In Secrypt (pp. 479–486).

Cavli, O. F. T., & Sen, S. (2020). Familial classification of android malware using
hybrid analysis. In 2020 international conference on information security and
cryptology (iscturkey) (pp. 62–67).

Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods.
Computers & Electrical Engineering, 40(1), 16–28.

Chen, Y., Jiang, H., Li, C., Jia, X., & Ghamisi, P. (2016). Deep feature extraction and
classification of hyperspectral images based on convolutional neural networks.
IEEE Transactions on Geoscience and Remote Sensing, 54(10), 6232–6251.

ClassyShark: Android and Java Bytecode viewer. (2023). https://github.com/
google/android-classyshark. ([Last access date: 12 June 2023])

Cuckoo Sandbox: Automated Malware Analysis. (2023). https://cuckoosandbox
.org/. ([Last access date: 12 June 2023])

Damshenas, M., Dehghantanha, A., Choo, K.-K. R., & Mahmud, R. (2015). M0droid:
An android behavioral-based malware detection model. Journal of Information
Privacy and Security, 11(3), 141–157.

Daoudi, N., Samhi, J., Kabore, A. K., Allix, K., Bissyandé, T. F., & Klein, J. (2021).
Dexray: A simple, yet effective deep learning approach to android malware
detection based on image representation of bytecode. In G. Wang, A. Ciptadi, &
A. Ahmadzadeh (Eds.), Deployable machine learning for security defense (pp.
81–106). Cham: Springer International Publishing.

Darus, F. M., Ahmad, N. A., & Ariffin, A. F. M. (2019). Android malware classification
using xgboost on data image pattern. In 2019 ieee international conference on
internet of things and intelligence system (iotais) (pp. 118–122).

DeGuard: Statistical Deobfuscation for Android. (2023). http://apk-deguard
.com/. ([Last access date: 12 June 2023])

dex2jar: Tools to work with android .dex and java .class files. (2023). https://
github.com/pxb1988/dex2jar. ([Last access date: 12 June 2023])

Ding, Y., Zhang, X., Hu, J., & Xu, W. (2020). Android malware detection method based
on bytecode image. Journal of Ambient Intelligence and Humanized Computing,
1–10.

81

https://github.com/google/android-classyshark
https://github.com/google/android-classyshark
https://cuckoosandbox.org/
https://cuckoosandbox.org/
http://apk-deguard.com/
http://apk-deguard.com/
https://github.com/pxb1988/dex2jar
https://github.com/pxb1988/dex2jar

Ding, Y.-X., Zhao, W.-G., Wang, Z.-P., & Wang, L.-F. (2018). Automaticlly learning
featurs of android apps using cnn. In 2018 international conference on machine
learning and cybernetics (icmlc) (Vol. 1, pp. 331–336).

Domeniconi, G., Moro, G., Pasolini, R., & Sartori, C. (2015). A study on term
weighting for text categorization: A novel supervised variant of tf. idf. In Data
(pp. 26–37).

Dubnov, S. (2004). Generalization of spectral flatness measure for non-gaussian linear
processes. IEEE Signal Processing Letters, 11(8), 698–701.

Elsersy, W. F., Feizollah, A., & Anuar, N. B. (2022). The rise of obfuscated android
malware and impacts on detection methods. PeerJ Computer Science, 8, e907.

Fang, Y., Gao, Y., Jing, F., & Zhang, L. (2020). Android malware familial classification
based on dex file section features. IEEE Access, 8, 10614–10627.

Farrokhmanesh, M., & Hamzeh, A. (2019, 06). Music classification as a new approach
for malware detection. Journal of Computer Virology and Hacking Techniques,
15, 1-20. doi: 10.1007/s11416-018-0321-2

Feng, J., Shen, L., Chen, Z., Wang, Y., & Li, H. (2020). A two-layer deep learning
method for android malware detection using network traffic. IEEE Access, 8,
125786–125796.

Galavotti, L., Sebastiani, F., & Simi, M. (2000). Experiments on the use of feature
selection and negative evidence in automated text categorization. In Research
and advanced technology for digital libraries: 4th european conference, ecdl
2000 lisbon, portugal, september 18–20, 2000 proceedings 4 (pp. 59–68).

Ganesh, M., Pednekar, P., Prabhuswamy, P., Nair, D. S., Park, Y., & Jeon, H. (2017).
Cnn-based android malware detection. In 2017 international conference on
software security and assurance (icssa) (pp. 60–65).

Gerardi, F., Iadarola, G., Martinelli, F., Santone, A., & Mercaldo, F. (2021, 09).
Perturbation of image-based malware detection with smali level morphing
techniques. In (p. 1651-1656). doi: 10.1109/ISPA-BDCloud-SocialCom
-SustainCom52081.2021.00221

Giannakas, F., Kouliaridis, V., & Kambourakis, G. (2023). A closer look at machine
learning effectiveness in android malware detection. Information, 14(1), 2.

Giannakopoulos, T., & Pikrakis, A. (2014). Introduction to audio analysis: a matlab®
approach. Academic Press.

Google play store. (2023). https://play.google.com/store/apps. ([Last access
date: 12 June 2023])

Hall, M. A. (1999). Correlation-based feature subset selection for machine
learning (Unpublished doctoral dissertation). Department of Computer Science,
University of Waikato, Hamilton, New Zealand.

Hsien-De Huang, T., & Kao, H.-Y. (2018). R2-d2: Color-inspired convolutional neural
network (cnn)-based android malware detections. In 2018 ieee international
conference on big data (big data) (pp. 2633–2642).

Hsu, C., & Lin, C. (2018). Cnn-based joint clustering and representation learning

82

https://play.google.com/store/apps

with feature drift compensation for large-scale image data. IEEE Transactions
on Multimedia, 20(2), 421-429.

JADX: Dex to Java decompiler. (2023). https://github.com/skylot/jadx. ([Last
access date: 12 June 2023])

Jiang, D.-N., Lu, L., Zhang, H.-J., Tao, J.-H., & Cai, L.-H. (2002). Music type
classification by spectral contrast feature. In Proceedings. ieee international
conference on multimedia and expo (Vol. 1, pp. 113–116).

Jusoh, R., Firdaus, A., Anwar, S., Osman, M. Z., Darmawan, M. F., & Ab Razak, M. F.
(2021). Malware detection using static analysis in android: a review of feco
(features, classification, and obfuscation). PeerJ Computer Science, 7, e522.

Keras: Deep Learning for humans. (2023). https://keras.io/. ([Last access date:
12 June 2023])

Keyvanpour, M. R., Barani Shirzad, M., & Heydarian, F. (2023). Android malware
detection applying feature selection techniques and machine learning. Multimedia
Tools and Applications, 82(6), 9517–9531.

Kinkead, M., Millar, S., McLaughlin, N., & O’Kane, P. (2021). Towards explainable
cnns for android malware detection. Procedia Computer Science, 184, 959–965.

Kira, K., & Rendell, e. a., Larry A. (1992). The feature selection problem: Traditional
methods and a new algorithm. In Aaai (Vol. 2, pp. 129–134).

Kononenko, I. (1994). Estimating attributes: Analysis and extensions of relief. In
F. Bergadano & L. De Raedt (Eds.), Machine learning: Ecml-94 (pp. 171–182).
Berlin, Heidelberg: Springer Berlin Heidelberg.

Kouliaridis, V., Barmpatsalou, K., Kambourakis, G., & Chen, S. (2020). A survey on
mobile malware detection techniques. IEICE Transactions on Information and
Systems, 103(2), 204–211.

Kumar, A., Sagar, K. P., Kuppusamy, K., & Aghila, G. (2016). Machine learning
based malware classification for android applications using multimodal image
representations. In 2016 10th international conference on intelligent systems and
control (isco) (pp. 1–6).

Kural, O. E., Kiliç, E., & Aksaç, C. (2023). Apk2audio4andmal: Audio based malware
family detection framework. IEEE Access, 11, 27527–27535.

Kural, O. E., Sahin, D. O., Akleylek, S., & Kılıç, E. (2019). Permission
weighting approaches in permission based android malware detection. In
2019 4th international conference on computer science and engineering (ubmk)
(p. 134-139). doi: 10.1109/UBMK.2019.8907187

Kural, O. E., Sahin, D. O., Akleylek, S., Kılıç, E., & Ömüral, M.
(2021). Apk2img4andmal: Android malware detection framework based on
convolutional neural network. In 2021 6th international conference on computer
science and engineering (ubmk) (p. 731-734). doi: 10.1109/UBMK52708.2021
.9558983

Kural, O. E., Sahin, D. O., & Kiliç, E. (2023). An extensive experimental study for
android malware detection: Investigation of the effect of static feature groups on

83

https://github.com/skylot/jadx
https://keras.io/

classification performance. Submitted article.

Lan, M., Tan, C. L., Su, J., & Lu, Y. (2008). Supervised and traditional term weighting
methods for automatic text categorization. IEEE transactions on pattern analysis
and machine intelligence, 31(4), 721–735.

Lashkari, A. H., Kadir, A. F. A., Taheri, L., & Ghorbani, A. A. (2018). Toward
developing a systematic approach to generate benchmark android malware
datasets and classification. In 2018 international carnahan conference on security
technology (iccst) (pp. 1–7).

Li, Q., Chen, G., Li, B., et al. (2023). Android malware detection based on program
genes. Security and Communication Networks, 2023.

Li, X., Tang, Y., Christo, M. S., Zhao, Z., & Li, Y. (2022). Android malware application
detection method based on rgb image features in e-commerce. Journal of Internet
Technology, 23(6), 1343–1352.

Liu, P., Wang, W., Zhang, S., & Song, H. (2023, 04). Imagedroid: Using deep learning
to efficiently detect android malware and automatically mark malicious features.
Security and Communication Networks, 2023, 1-11. doi: 10.1155/2023/5393890

Luo, J.-S., & Lo, D. C.-T. (2017). Binary malware image classification using machine
learning with local binary pattern. In 2017 ieee international conference on big
data (big data) (pp. 4664–4667).

Mahdavifar, S., Alhadidi, D., & Ghorbani, A. A. (2022). Effective and efficient hybrid
android malware classification using pseudo-label stacked auto-encoder. Journal
of network and systems management, 30, 1–34.

Maisonnave, M., Delbianco, F., Tohmé, F. A., & Maguitman, A. G. (2019). A flexible
supervised term-weighting technique and its application to variable extraction
and information retrieval. Inteligencia Artificial, 22(63), 61–80.

Maniriho, P., Mahmood, A. N., & Chowdhury, M. J. M. (2022). A survey of recent
advances in deep learning models for detecting malware in desktop and mobile
platforms. arXiv preprint arXiv:2209.03622.

Marwaha, A., Malik, R. Q., Beram, S. M., Rizwan, A., Kishore, K. H., Thakur, D., . . .
Shabaz, M. (2023). Visualisation-based binary classification of android malware
using vgg16. IET Software.

McAfee Mobile Threat Report. (2023). https://www.mcafee.com/content/dam/
global/infographics/McAfeeMobileThreatReport2021.pdf. ([Last
access date: 12 June 2023])

Meijin, L., Zhiyang, F., Junfeng, W., Luyu, C., Qi, Z., Tao, Y., . . . Jiaxuan, G.
(2022). A systematic overview of android malware detection. Applied Artificial
Intelligence, 36(1), 2007327. Retrieved from https://doi.org/10.1080/
08839514.2021.2007327 doi: 10.1080/08839514.2021.2007327

Memon, M., Unar, A. A., Ahmed, S. S., Daudpoto, G. H., & Jaffari, R. (2023).
Feature-based semi-supervised learning approach to android malware detection.
Engineering Proceedings, 32(1), 6.

Mercaldo, F., & Santone, A. (2021). Audio signal processing for android malware

84

https://www.mcafee.com/content/dam/global/infographics/McAfeeMobileThreatReport2021.pdf
https://www.mcafee.com/content/dam/global/infographics/McAfeeMobileThreatReport2021.pdf
https://doi.org/10.1080/08839514.2021.2007327
https://doi.org/10.1080/08839514.2021.2007327

detection and family identification. Journal of Computer Virology and Hacking
Techniques, 17(2), 139–152.

Milosevic, N., Dehghantanha, A., & Choo, K.-K. R. (2017). Machine learning
aided android malware classification. Computers & Electrical Engineering, 61,
266–274.

MobSF: Mobile Security Framework. (2023). https://github.com/MobSF/Mobile
-Security-Framework-MobSF. ([Last access date: 12 June 2023])

Mohamad Arif, J., Ab Razak, M. F., Awang, S., Tuan Mat, S. R., Ismail, N. S. N.,
& Firdaus, A. (2021). A static analysis approach for android permission-based
malware detection systems. PloS one, 16(9), e0257968.

Nataraj, L., Karthikeyan, S., Jacob, G., & Manjunath, B. S. (2011). Malware images:
visualization and automatic classification. In Proceedings of the 8th international
symposium on visualization for cyber security (pp. 1–7).

Nataraj, L., Mohammed, T. M., Nanjundaswamy, T., Chikkagoudar, S.,
Chandrasekaran, S., & Manjunath, B. (2021). Omd: Orthogonal malware
detection using audio, image, and static features. In Milcom 2021-2021 ieee
military communications conference (milcom) (pp. 703–708).

Nissim, N., Moskovitch, R., BarAd, O., Rokach, L., & Elovici, Y. (2016). Aldroid:
efficient update of android anti-virus software using designated active learning
methods. Knowledge and Information Systems, 49, 795–833.

Pan, Y., Ge, X., Fang, C., & Fan, Y. (2020). A systematic literature review of android
malware detection using static analysis. IEEE Access, 8, 116363–116379.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., . . .
Dubourg, e. a., Vincent (2011). Scikit-learn: Machine learning in python. the
Journal of machine Learning research, 12, 2825–2830.

Peiravian, N., & Zhu, X. (2013). Machine learning for android malware detection
using permission and api calls. In 2013 ieee 25th international conference on
tools with artificial intelligence (pp. 300–305).

Rathore, H., Sahay, S. K., Nikam, P., & Sewak, M. (2021). Robust android malware
detection system against adversarial attacks using q-learning. Information
Systems Frontiers, 23, 867–882.

Şahin, D. Ö., Kural, O. E., Akleylek, S., & Kılıç, E. (2021a). A novel android malware
detection system: adaption of filter-based feature selection methods. Journal of
Ambient Intelligence and Humanized Computing, 1–15.

Şahin, D. Ö., Kural, O. E., Akleylek, S., & Kılıç, E. (2021b). A novel permission-based
android malware detection system using feature selection based on linear
regression. Neural Computing and Applications, 1–16.

Şahin, D. Ö., Kural, O. E., Akleylek, S., & Kılıç, E. (2021c). Permission-based android
malware analysis by using dimension reduction with pca and lda. Journal of
Information Security and Applications, 63, 102995.

Salton, G., & Buckley, C. (1988). Term-weighting approaches in automatic text
retrieval. Information processing & management, 24(5), 513–523.

85

https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://github.com/MobSF/Mobile-Security-Framework-MobSF

scikit-learn: machine learning in Python scikit-learn 1.2.2 documentation. (2023).
https://scikit-learn.org/stable/. ([Last access date: 12 June 2023])

Shah, A., Kattel, M., Nepal, A., & Shrestha, D. (2019). Chroma feature extraction.
Retrieved from https://www.researchgate.net/profile/Ayush-Shah

-6/publication/363487456 Chroma Feature Extractionpdf/data/

631f9a1770cc936cd301efc1/Chroma-Feature-Extraction.pdf

Shahid Alam, A. K. D. (2023). Mining android bytecodes through the eyes of gabor
filters for detecting malware. The International Arab Journal of Information
Technology (IAJIT), 20(02), 30 - 39. doi: 10.34028/iajit/20/2/4

Sharma, M., Chawla, M., & Gajrani, J. (2016). A survey of android malware detection
strategy and techniques. In Proceedings of international conference on ict for
sustainable development: Ict4sd 2015 volume 2 (pp. 39–51).

Sharma, T., & Rattan, D. (2021). Malicious application detection in android—a
systematic literature review. Computer Science Review, 40, 100373.

Singh, A. K., Jaidhar, C., & Kumara, M. A. (2019). Experimental analysis of android
malware detection based on combinations of permissions and api-calls. Journal
of Computer Virology and Hacking Techniques, 15, 209–218.

Singh, J., Thakur, D., Ali, F., Gera, T., & Kwak, K. S. (2020). Deep feature extraction
and classification of android malware images. Sensors, 20(24), 7013.

Singh, J., Thakur, D., Gera, T., Shah, B., Abuhmed, T., & Ali, F. (2021). Classification
and analysis of android malware images using feature fusion technique. IEEE
Access, 9, 90102–90117.

Statista — Forecast number of mobile users. (2023). https://www.statista.com/
statistics/218984/number-of-global-mobile-users-since-2010/.
([Last access date: 12 June 2023])

Statista — Global mobile os market share. (2023). https://www.statista.com/
statistics/272698/global-market-share-held-by-mobile

-operating-systems-since-2009/. ([Last access date: 12 June 2023])

Suarez-Tangil, G., Tapiador, J. E., Peris-Lopez, P., & Blasco, J. (2014). Dendroid:
A text mining approach to analyzing and classifying code structures in
android malware families. Expert Systems with Applications, 41(4, Part 1),
1104-1117. Retrieved from https://www.sciencedirect.com/science/
article/pii/S0957417413006088 doi: https://doi.org/10.1016/j.eswa.2013
.07.106

Tarwireyi, P., Terzoli, A., & Adigun, e. a., Matthew O. (2022). Barkdroid: Android
malware detection using bark frequency cepstral coefficients. Indonesian Journal
of Information Systems, 5(1), 48–63.

Tarwireyi, P., Terzoli, A., & Adigun, M. O. (2023). Using multi-audio feature fusion
for android malware detection. Computers & Security, 103282.

Tasyurek, M., & Arslan, R. S. (2023). Rt-droid: a novel approach for real-time
android application analysis with transfer learning-based cnn models. Journal of
Real-Time Image Processing, 20(3), 1–17.

86

https://scikit-learn.org/stable/
https://www.researchgate.net/profile/Ayush-Shah-6/publication/363487456_Chroma_Feature_Extractionpdf/data/631f9a1770cc936cd301efc1/Chroma-Feature-Extraction.pdf
https://www.researchgate.net/profile/Ayush-Shah-6/publication/363487456_Chroma_Feature_Extractionpdf/data/631f9a1770cc936cd301efc1/Chroma-Feature-Extraction.pdf
https://www.researchgate.net/profile/Ayush-Shah-6/publication/363487456_Chroma_Feature_Extractionpdf/data/631f9a1770cc936cd301efc1/Chroma-Feature-Extraction.pdf
https://www.statista.com/statistics/218984/number-of-global-mobile-users-since-2010/
https://www.statista.com/statistics/218984/number-of-global-mobile-users-since-2010/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.sciencedirect.com/science/article/pii/S0957417413006088
https://www.sciencedirect.com/science/article/pii/S0957417413006088

Tiwari, S. R., & Shukla, R. U. (2018). An android malware detection technique based
on optimized permissions and api. In 2018 international conference on inventive
research in computing applications (icirca) (pp. 258–263).

Ünver, H. M., & Bakour, K. (2020). Android malware detection based on image-based
features and machine learning techniques. SN Applied Sciences, 2, 1–15.

Vasan, D., Alazab, M., Wassan, S., Safaei, B., & Zheng, Q. (2020). Image-based
malware classification using ensemble of cnn architectures (imcec). Computers
Security, 92, 101748. Retrieved from https://www.sciencedirect.com/
science/article/pii/S016740482030033X doi: https://doi.org/10.1016/
j.cose.2020.101748

Vu, L. N., & Jung, S. (2021). Admat: A cnn-on-matrix approach to android malware
detection and classification. IEEE Access, 9, 39680–39694.

Wei, F., Li, Y., Roy, S., Ou, X., & Zhou, W. (2017). Deep ground truth analysis of current
android malware. In Detection of intrusions and malware, and vulnerability
assessment: 14th international conference, dimva 2017, bonn, germany, july
6-7, 2017, proceedings 14 (pp. 252–276).

Wei, Y., Xia, W., Lin, M., Huang, J., Ni, B., Dong, J., . . . Yan, S. (2016). Hcp: A
flexible cnn framework for multi-label image classification. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 38(9), 1901-1907.

Witten, I. H., & Frank, E. (2002). Data mining: practical machine learning tools and
techniques with java implementations. Acm Sigmod Record, 31(1), 76–77.

Wu, B., Chen, S., Gao, C., Fan, L., Liu, Y., Wen, W., & Lyu, M. R. (2021).
Why an android app is classified as malware: Toward malware classification
interpretation. ACM Transactions on Software Engineering and Methodology
(TOSEM), 30(2), 1–29.

Wu, Q., Zhu, X., & Liu, B. (2021). A survey of android malware static detection
technology based on machine learning. Mobile Information Systems, 2021,
1–18.

Yadav, P., Menon, N., Ravi, V., Vishvanathan, S., & Pham, T. (2022, 05). A two-stage
deep learning framework for image-based android malware detection and variant
classification. Computational Intelligence, 38, 1748-1771. doi: 10.1111/coin
.12532

Yan, P., & Yan, Z. (2018). A survey on dynamic mobile malware detection. Software
Quality Journal, 26(3), 891–919.

Yao, X., Li, Y., Shi, Z., Liu, K., & Du, X. (2023). Android malware detection based
on sensitive features combination. Concurrency and Computation: Practice and
Experience, 35(6), 1–1.

Ye, G., Zhang, J., Li, H., Tang, Z., & Lv, T. (2022). Android malware detection
technology based on lightweight convolutional neural networks. Security and
Communication Networks, 2022.

Yen, Y.-S., & Sun, H.-M. (2019). An android mutation malware detection based on
deep learning using visualization of importance from codes. Microelectronics
Reliability, 93, 109–114.

87

https://www.sciencedirect.com/science/article/pii/S016740482030033X
https://www.sciencedirect.com/science/article/pii/S016740482030033X

Yerima, S. Y., & Sezer, S. (2018). Droidfusion: A novel multilevel classifier fusion
approach for android malware detection. IEEE transactions on cybernetics,
49(2), 453–466.

Yilmaz, A. B., Taspinar, Y. S., & Koklu, M. (2022). Classification of malicious
android applications using naive bayes and support vector machine algorithms.
International Journal of Intelligent Systems and Applications in Engineering,
10(2), 269–274.

Zhang, W., Luktarhan, N., Ding, C., & Lu, B. (2021). Android malware detection
using tcn with bytecode image. Symmetry, 13(7), 1107.

Zhang, Y., Feng, C., Huang, L., Ye, C., & Weng, L. (2020). Detection of android
malicious family based on manifest information. In 2020 15th international
conference on computer science & education (iccse) (pp. 202–205).

Zhiwu, X., Ren, K., & Song, F. (2019). Android malware family classification
and characterization using cfg and dfg. In 2019 international symposium on
theoretical aspects of software engineering (tase) (pp. 49–56).

Zhou, Y., & Jiang, X. (2012). Dissecting android malware: Characterization and
evolution. In 2012 ieee symposium on security and privacy (pp. 95–109).

Zhu, H., Wei, H., Wang, L., Xu, Z., & Sheng, V. S. (2023). An effective end-to-end
android malware detection method. Expert Systems with Applications, 218,
119593.

Zhu, H.-J., You, Z.-H., Zhu, Z.-X., Shi, W.-L., Chen, X., & Cheng, L. (2018). Droiddet:
effective and robust detection of android malware using static analysis along with
rotation forest model. Neurocomputing, 272, 638–646.

Zou, K., Luo, X., Liu, P., Wang, W., & Wang, H. (2020). Bytedroid: android malware
detection using deep learning on bytecode sequences. In Trusted computing
and information security: 13th chinese conference, ctcis 2019, shanghai, china,
october 24–27, 2019, revised selected papers 13 (pp. 159–176).

88

	Acceptance And Approval Of The Thesis
	Declaration Of Compliance With Scientific Ethic
	Declaration Of The Thesis Study Originality Report
	Özet
	Abstract
	Acknowledgements
	Contents
	Symbols and Abbreviations
	Figures Legends
	Tables Legends
	Introduction
	Motivation and Contribution
	Organization

	Basic Structures and Related Works
	Android Platform
	Android Malware Analysis Tools

	Android Malware Datasets
	Performance Measures
	Literature Review

	Preliminaries
	Permission Weighting Approaches in Permission Based Android Malware Detection
	Proposed Method
	Term Weighting Methods
	Experimental Results

	Apk2Img4AndMal: Android Malware Detection Framework Based on Convolutional Neural Network
	Proposed Framework
	Experimental Settings
	Used Data Set
	Convolutional Neural Network
	Experimental Results

	An Extensive Experimental Study for Android Malware Detection: Investigation of the Effect of Static Feature Groups on Classification Performance
	Motivation
	Contribution
	Experimental Design
	Used Datasets
	Feature Set Combinations
	Image Transformation

	Experimental Results
	Malgenome Results
	Drebin Results
	CNN Results
	Comparison with previous studies

	Apk2Audio4AndMal: Audio Based Malware Family Detection Framework
	Motivation
	Contribution
	Proposed Method
	Feature Selection
	Information Gain (IG)
	Gain Ratio (GR)
	CFS Subset (CSF)
	ReliefF (RFF)

	Experimental Settings
	Experimental Results

	Conclusions
	References
	Curriculum Vitae

